

American FactFinder Detailed
Technical Design
Data Access and Dissemination System (DADS)
American FactFinder

Version No: 1.1

Version Publishing Date: 9/18/2006 12:59 PM

Author: Application Architecture and Development Team

Owner: Application Architecture and Development Team Leader

Client: Bureau of Census (BOC)

Contract Number: 50-YABC-7-66012

The only authorized copy of this document is the on-line version maintained in the DADS repository. User must ensure that this
or any other copy of a controlled document is current and complete prior to use. Document owner must authorize all changes.
Users should discard obsolete copies.

Date Last Printed: 9/26/06 Page 2 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

DOCUMENT ADMINISTRATION
Ensure that this document is current. Printed documents and locally copied files may become obsolete
due to changes to the master document.

The document original is located in the project’s documentation repository at the following file address:
I:\Special Projects\AFF Documentation\08 WProd\AFF Detailed Technical
Design\Baseline\American FactFinder Detailed Technical Design v1.1.doc

i. Revision History Log
The maintenance of this Revision History Log is mandatory. Document users discovering that the last
logged revision date is over 120 days old should assume the content is dated and should alert the
document’s owner.

Revision
Number

Revision
Date Summary of Changes Team - Author

0.91 2005-08-30 Incorporated feedback from Inspection Report from
meeting on 2005-8-24 on Chapters 3, 5.3, 5.4, 5.5.11,
5.6.9, 5.6.12, and 5.6.13 from revision number 0.9w.
Added Map Architectural Components subsection.

0.92 2005-08-31 Incorporated feedback from Inspection Report from
meeting on 2005-08-02 on Chapters 5.5 and 5.6 from
revision number 0.9w.

1.0 2005-09-12 Incorporated feedback from Inspection Report from
meeting on 2005-09-08 on Chapters 5.5.12, 5.6.16,
5.6.17, 5.6.18, and 8 from revision number 0.9w.

1.1 2005-09-22 Updates to the document path and author/owner
fields. Also, updated section 5.5.12.

Table 1: Revision History Log. If this log has not been updated in more than 120 days, assume the content is dated.

ii. Identification
This document is identified as the DADS American FactFinder Detailed Technical Design. The production
and maintenance of this document is the responsibility of the American FactFinder AA&D Team Leader.

iii. Document References
The following documents should be reviewed as an extension of this document’s subject matter or as
supplemental reference material.

• I:\BA\02 Functional Specifications\AFF\Archive\Thru Release
9.3\Fspec_8.0_Display_Results_R8_v2.0.doc

• I:\BA\02 Functional Specifications\AFF\Baseline\Release 10.2 Design

• I:\BA\02 Functional Specifications\AFF\Archive\Thru Release
9.3\Fspec_Industry Quick Reports_R9_3.doc

• I:\BA\02 Functional Specifications\AFF\Archive\Thru Release
9.3\Fspec_Product Quick Reports_R9_3.doc

• I:\BA\02 Functional Specifications\AFF\Archive\Release 9.4\Fspec_12.0_Econ
Data Sets Path_R9.4_v1.8.doc

Date Last Printed: 9/26/06 Page 3 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

TABLE OF CONTENTS
1. INTRODUCTION ..17

1.1. Scope ...17
1.2. Audience ..17
1.3. Purpose ..17
1.4. What is AFF?..17

1.4.1. Important Definitions...17
1.5. References ...18

2. ARCHITECTURAL REPRESENTATION ...21
2.1. Functional View ..21
2.2. Logical View ...22
2.3. Operational/Process View ..25
2.4. Deployment View..28
2.5. Implementation View ..29

3. ARCHITECTURAL GOALS AND CONSTRAINTS ..31
3.1. Architectural Goals ...31

3.1.1. Background ..31
3.1.2. Challenges..31
3.1.3. The Business Drivers ...31
3.1.4. The Solution ...32
3.1.5. Architectural Principals ...32
3.1.6. Stakeholders...33
3.1.7. Users ..34
3.1.8. Surfers..35
3.1.9. Manipulators...35
3.1.10. Portrayers ...35
3.1.11. Extractors ...35

3.2. Constraints ...35
3.2.1. Census Bureau Policies, Standards and Guidelines ..36
3.2.2. Federal Regulations ...36
3.2.3. Survey Data Issues ..36
3.2.4. COTS Software Licensing Issues ...36
3.2.5. Non-Function Requirements...36
3.2.6. Web-based ...36

4. FUNCTIONAL VIEW ..37
4.1. Workflows...37
4.2. Products ...38
4.3. Workflow and Subsystem Notation ...38
4.4. User Interfaces ...40

4.4.1. User Interface Guidelines ...42
4.4.2. Main Window Page Layout...43
4.4.3. Pop-Up Window Page Layout...45
4.4.4. Main Page User Interface...46
4.4.5. Simple AFF User Interface ...48
4.4.6. Data Sets Page User Interface...51
4.4.7. Crawler Launch Pad (CLP) User Interface ...53
4.4.8. Census 2000 Puerto Rico (Spanish Language) User Interface54
4.4.9. Core AFF User Interface ..56
4.4.10. Congressional Web Site User Interface..67
4.4.11. American Indian and Alaska Native (AIAN) Data and Links User Interface....................70
4.4.12. Kid’s Corner User Interface ..71
4.4.13. Basic Facts User Interface ...73
4.4.14. Administration User Interface ...74
4.4.15. Command Line (System Administration) User Interface...77

4.5. Subsystem Workflows ..78
4.5.1. Advanced Search (AdvSearch) Subsystem..78

Date Last Printed: 9/26/06 Page 4 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.5.2. ACS Data Profile (ADP) Subsystem ...79
4.5.3. Narrative Profile (NP) Subsystem...80
4.5.4. Custom Table (CT) Subsystem ..80
4.5.5. Detailed Table (DT) Subsystem..81
4.5.6. Geographic Comparison Table (GCT) Subsystem ...81
4.5.7. Geography Quick Reports (GQR) Subsystem..82
4.5.8. Geographic Ranking Table (GRT) Subsystem ...83
4.5.9. Industry Build Query (IBQ) Subsystem...83
4.5.10. Industry Quick Reports (IQR) Subsystem...85
4.5.11. Multi-Year Profile (MYP) Subsystem ..85
4.5.12. Quick Table (QT) Subsystem ...86
4.5.13. Interated Profiles (IP) Subsystem...87
4.5.14. Subject Tables (ST) Subsystem ...87
4.5.15. Product (Industry) Quick Reports (PIQR) Subsystem...87
4.5.16. Product Quick Reports (PQR) Subsystem..88
4.5.17. Thematic Map (TM) Subsystem..89
4.5.18. Reference Map (RM) Subsystem ...90
4.5.19. Help / Metadata Browser (HELP) Subsystem...90
4.5.20. Public Use Microdata Sample (PUMS) Subsystem ..91

4.6. Common Workflow Steps ...92
4.6.1. Select Data Elements ...92
4.6.2. Select a Data Set..92
4.6.3. Select Filter...92
4.6.4. Select Geographies ..92
4.6.5. Select a Geography..92
4.6.6. Select Industry..92
4.6.7. Select Population Groups...92
4.6.8. Select a Population Group..93
4.6.9. Select a Program..93
4.6.10. Select Quick Report..93
4.6.11. Select a Ranking Table ..93
4.6.12. Select a Table Format ..93
4.6.13. Select a Theme ..94
4.6.14. Select Tables..94
4.6.15. Select a Table...94

4.7. Other Functionality..94
4.7.1. Bookmarking...94
4.7.2. Deep-Linking ..94
4.7.3. Save/Load Query..94
4.7.4. User Statistics...95

4.8. Session Contexts..95
5. LOGICAL VIEW ...96

5.1. System Context Diagram..96
5.1.1. Entities Interacting with AFF...96

5.2. Architectural Overview Diagram ...97
5.2.1. IBM WebSphere Edge Server ..98
5.2.2. IBM HTTP Server ...98
5.2.3. HTTP Plug-In..98
5.2.4. WebSphere Application Server...99
5.2.5. Application Server Clones ..99
5.2.6. IBM LDAP Server ...99
5.2.7. ArcIMS..99
5.2.8. ArcSDE...100
5.2.9. AFF Application Architecture ..100
5.2.10. Logging...103
5.2.11. AFF Logical Data Structure ..103

5.3. Separation of Concerns and Architectural Tiers..106
5.3.1. Architectural Tiers...106

5.4. AFF Component Model...108
5.4.1. Custom Components..108
5.4.2. Custom Infrastructure Components..117

Date Last Printed: 9/26/06 Page 5 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.4.3. Technical and Infrastructure Components..122
5.5. Architectural Mechanisms...130

5.5.1. Security Model..130
5.5.2. Session Failover ...131
5.5.3. Exception Logging ..133
5.5.4. User Activity Logging..136
5.5.5. Zero Footprint on Client Brower..137
5.5.6. 508 Compliance..137
5.5.7. Bookmarking...140
5.5.8. Thread Pooling ...141
5.5.9. Producer-Consumer for Faster UI Refresh...143
5.5.10. Application-Level Caching ..147
5.5.11. Custom Advisor for WebSphere Edge Server ..151
5.5.12. Map Architectural Components ..153

5.6. Detailed Design for Architectural Significant Use Case...161
5.6.1. SAFF – Simple AFF..161
5.6.2. View Dataset Page ...169
5.6.3. Geography Selection ..181
5.6.4. Subject Selection..210
5.6.5. Create a Table (full example) ...234
5.6.6. Select an Economic Detailed Dataset ..256
5.6.7. Custom Tables ...269
5.6.8. Download a Table...277
5.6.9. Related Items ...286
5.6.10. Advanced Search ...295
5.6.11. Access Metadata Browser..311
5.6.12. Create a Reference Map ..321
5.6.13. Create a Thematic Map ..342
5.6.14. User Activity Logging..352
5.6.15. Load & Save Query ..362
5.6.16. Congressional Web Site (CWS) ...367
5.6.17. Industry Selection (Econ) ...371
5.6.18. Bookmarking...378

6. OPERATIONAL/PROCESS VIEW ...385
6.1. Execution Environments ...385

6.1.1. Environment Relationships...385
6.1.2. Processes Within An Execution Environment...385
6.1.3. Subsystems..389
6.1.4. Processes and Subsystem Relationships...389
6.1.5. Production Environment ...390
6.1.6. Internal Review Environment..395
6.1.7. Product Assurance Environment ..395
6.1.8. Development Environment ...396

6.2. Startup / Shutdown ...396
6.2.1. System Startup / Shutdown ..397
6.2.2. Leg Startup / Shutdown ..397
6.2.3. Subsystem Startup / Shutdown ..398

6.3. Batch Processes...398
6.4. Patching ...400

6.4.1. The “message of the day” alert...400
6.5. Monitoring...400

6.5.1. Reports...401
6.5.2. Instantaneous Monitoring ...401

7. DEPLOYMENT VIEW...402
7.1. Overview ..402

7.1.1. Number of Tasks ..403
7.1.2. Server and Database Connections...404
7.1.3. Naming Conventions ..404

7.2. Development Environment ...405

Date Last Printed: 9/26/06 Page 6 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

8. IMPLEMENTATION VIEW ...406
8.1. Development Process...406
8.2. Developer Workstations..407

8.2.1. Any Workstation ...407
8.2.2. Developer Workstation ...407
8.2.3. Builder Workstation ..409

8.3. ClearQuest Defect / Feature Tracking System..409
8.4. ClearCase Source Control System ...410
8.5. Source Tree..411
8.6. Build and Deployment Workflow ...412
8.7. The AFF Application Deliverable ..413

9. SIZING AND PERFORMANCE VIEW ..414
9.1. Overview ..414
9.2. Users and User Activity ..415
9.3. Response Times...416

9.3.1. User Activity Limits and Assumptions...416
9.3.2. Performance Testing ..417

9.4. Network Bandwidth...417
9.5. Application Performance Techniques ...418
9.6. Non-Application Performance Techniques..419

9.6.1. Custom Advisors ..419
10. QUALITY..421

10.1. Correctness ..421
10.2. Reliability ..421
10.3. User Friendliness..422

10.3.1. Client Support...423
10.4. Maintainability...424
10.5. Efficiency ..425
10.6. Portability..425

APPENDIX A. SOURCE CODE TREE..427
A.1. Source Tree Root Directory ..427
A.2. Java Source/gov/census Directory ...427
A.3. Java Source/gov/census/aff Directory...427

A.3.1. Java Source/gov/census/aff/controller Directory...428
A.3.2. Java Source/gov/census/aff/dataAccess Directory...430
A.3.3. Java Source/gov/census/aff/debug Directory ...431
A.3.4. Java Source/gov/census/aff/domain Directory..431
A.3.5. Java Source/gov/census/aff/key Directory..433
A.3.6. Java Source/gov/census/aff/logging Directory..433
A.3.7. Java Source/gov/census/aff/persistence Directory ...434
A.3.8. Java Source/gov/census/aff/pool Directory ...434
A.3.9. Java Source/gov/census/aff/registry Directory..435
A.3.10. Java Source/gov/census/aff/service Directory...435
A.3.11. Java Source/gov/census/aff/session Directory ..436
A.3.12. Java Source/gov/census/aff/util Directory..437
A.3.13. Java Source/gov/census/aff/viewAdapter Directory ..437
A.3.14. Java Source/gov/census/aff/xml Directory...438

A.4. Java Source/gov/census/cws Directory ..438
A.5. Java Source/gov/census/infrastructureservices Directory...438
A.6. Java Source/gov/census/phc Directory...439
A.7. Java Source/gov/census/saff Directory...439
A.8. Web Content Directory ...440

Date Last Printed: 9/26/06 Page 7 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

A.8.1. Web Content/arcims Directory..441
A.8.2. Web Content/css Directory...441
A.8.3. Web Content/home Directory ...441
A.8.4. Web Content/http-tars Directory ...443
A.8.5. Web Content/img Directory...443
A.8.6. Web Content/javascript Directory ...444
A.8.7. Web Content/jsp Directory..445
A.8.8. Web Content/properties Directory ..446
A.8.9. Web Content/scripts Directory ..448
A.8.10. Web Content/vendor Directory ..448
A.8.11. Web Content/WEB-INF Directory ..448

APPENDIX B. SUBSYSTEM SUPPORT MATRIX..450
B.1. Subsystem Support by Program ...450

APPENDIX C. ENHANCEMENTS FOR SEARCH ENGINES ...452
C.1. Table and Map Result Pages – Keywords & Description: Business Rules.................452

C.1.1. Business Rules for KEYWORDS..452
C.1.2. Business Rules for DESCRIPTION ..453

APPENDIX D. GLOSSARY OF TERMS AND ACRONYMS...454
D.1. Acronyms and Abbreviations ..454
D.2. Glossary ...456

Date Last Printed: 9/26/06 Page 8 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

TABLE OF FIGURES
Figure 1: AFF System / Application ...18
Figure 2: Functional view of user interfaces, Core AFF, and AFF subsystems..21
Figure 3: Functional view of the requests and responses associated with the steps in a workflow..........22
Figure 4: Functional view of the steps in a workflow..22
Figure 5: Design pattern class diagram (UML) ..23
Figure 6: Feedback function class diagram (UML) ..23
Figure 7: Feedback function sequence diagram (UML) ...24
Figure 8: Logical view visual sequence diagram example ...24
Figure 9: Operational/process view environments ...25
Figure 10: Basic operational process view ..27
Figure 11: Production environment operational/process overview...28
Figure 12: Deployment View Overview..29
Figure 13: Workflow example ..37
Figure 14: Sample subsystem workflow functional view ...39
Figure 15: Functional view notation scheme part 1..39
Figure 16: Functional view notation scheme part 2..40
Figure 17: AFF Functional View Overview...41
Figure 18: Quick table subsystem workflow example with different user interfaces.................................42
Figure 19: AFF basic web page layout ..43
Figure 20: Global Navigation Menu functional view...44
Figure 21: Main Page user interface screen capture ...46
Figure 22: Main Page user interface functional view ...47
Figure 23: Simple AFF (SAFF) user interface functional view ...48
Figure 24: Data Sets Page user interface screen capture ...51
Figure 25: Data Sets Page user interface functional view..52
Figure 26: CLP user interface screen capture ...53
Figure 27: CLP user interface subsystem workflow functional view...53
Figure 28: Census 2000 Puerto Rico (Spanish Language) user interface screen capture.......................54
Figure 29: Census 2000 Puerto Rico (Spanish Language) user interface functional view.......................55
Figure 30: Core AFF (CAFF) user interface subsystem workflow functional view....................................56
Figure 31: Core AFF (CAFF) Economic only user interface subsystem workflow functional view............57
Figure 32: Typical table result page screen capture ..60
Figure 33: Typical map result page screen capture ...61
Figure 34: Screen capture of breadcrumb from a Geographic Selection(s) page62
Figure 35: Example of breadcrumb "quick return" processing for Detailed Tables62
Figure 36: Screen capture of Scroll Actions on a Detailed Tables Result(s) page63
Figure 37: Screen capture of Menu Actions with Options menu entry Current Selections selected64
Figure 38: Congressional Web Site (CWS) user interface screen capture...67
Figure 39: Congressional Web Site (CWS) user interface functional view...68
Figure 40: American Indian and Alaska Native (AIAN) Data and Link user interface screen capture70
Figure 41: American Indian and Alaska Native (AIAN) Data and Link user interface functional view.......70
Figure 42: Kid’s Corner user interface screen capture...71
Figure 43: Kid's Corner (KC) user interface functional view...72
Figure 44: Basic Facts (BF) user interface functional view ..73
Figure 45: AFF Central user interface screen capture ...74
Figure 46: AFF Central user interface functional view ...75
Figure 47: AFF System Tools user interface screen capture ...76
Figure 48: AFF System Tools functional view..76
Figure 49: Advanced Search (AdvSearch) subsystem functional view ..78
Figure 50: ACS Data Profile (ADP) subsystem functional view ...79
Figure 51: Narrative Profile (NP) subsystem functional view ...80
Figure 52: Custom Table (CT) subsystem functional view...80
Figure 53: Detailed Table (DT) subsystem functional view..81
Figure 54: Geographic Comparison Table (GCT) subsystem functional view..81

Date Last Printed: 9/26/06 Page 9 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 55: Geography Quick Report (GQR) subsystem functional view ..82
Figure 56: Geographic Ranking Table (GRT) subsystem functional view..83
Figure 57: Industry Build Query (IBQ) subsystem functional view ...83
Figure 58: Industry Quick Report (IQR) subsystem functional view...85
Figure 59: Multi-Year Profile (MYP) subsystem functional view...85
Figure 60: Quick Table (QT) subsystem functional view..86
Figure 61: Interated Profiles (IP) subsystem functional view ...87
Figure 62: Subject Tables (ST) subsystem functional view..87
Figure 63: Product Industry Quick Report (PIQR) subsystem functional view ...88
Figure 64: Product Quick Report (PQR) Functionality ...88
Figure 65: Thematic Map (TM) subsystem functional view..89
Figure 66: Reference Map (RM) subsystem functional view..90
Figure 67: Metadata Browser (Help) subsystem functional view ...90
Figure 68: Public Use Microdata Sample (PUMS) subsystem functional view...91
Figure 69: Select Quick Report Function functional view...93
Figure 70: System Context Diagram..96
Figure 71: AFF Logical Architecture Overview ...97
Figure 72: AFF Layered Architectural Pattern ...107
Figure 73: User Agent Support ..110
Figure 74: Catalog Hierarchy...120
Figure 75: Registry Hierarchy..121
Figure 76: AFF Technical and Infrastructure Components and Architectural Layers123
Figure 77: VSD Example ...126
Figure 78: MVC and Layered Patterns ..127
Figure 79: Classes participating in generic exception logging in AFF..135
Figure 80: Sequence diagram illustrating generic exception logging in AFF..136
Figure 81: User Activity Logging..137
Figure 82: AFF Thread Pooling Class Diagram ...143
Figure 83: Producer / Consumer Collaboration..144
Figure 84: SimpleManager Class Diagram ..145
Figure 85: SmartManager Class Diagram..145
Figure 86: RunnableProduction Class Diagram...146
Figure 87: Persistance Class Hierarchy...150
Figure 88: Object creation sequence diagram ...151
Figure 89: Mapping Request Flow...154
Figure 90: Sample AXL File...156
Figure 91: Another Sample AXL File ...157
Figure 92: SDE Layer Naming Convention..159
Figure 93: ArcIMS Sagent Interaction..160
Figure 94: Geo Search flow chart ..165
Figure 95: SAFF class hierarchy ...168
Figure 96: Saff Sequence Diagram ...169
Figure 97: Sequence diagram for the DatasetMainPageServlet controller. ...173
Figure 98: Sequence Diagram for the SaffDatasetMainPageServlet. ..174
Figure 99: Sequence Diagram for the DatasetMainPageServlet_ES...175
Figure 100: Sequence diagram showing the creation of a DatasetPage domain object.176
Figure 101: Sequence diagram showing the creation of a Program domain objects..............................177
Figure 102: Sequence Diagram showing the hydration of attributes required to render the dataset

supported path popup. ..178
Figure 103: Common metadata entities for the View Datasets Page...179
Figure 104: SQL used to retrieve a list of supported programs..180
Figure 105: SQL used to create a Program. The disp_label is used as the text for the tabs in Dataset

Page..180
Figure 106: SQL used to check for Detail Table support. ..180
Figure 107: SQL used to check for Quick Table support. ..181
Figure 108: Location of the geo select component in the canonical functional selection in AFF............185

Date Last Printed: 9/26/06 Page 10 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 109: Class diagram showing the synergies among classes implementing the five geography
selection methods. ..190

Figure 110: Key metadata entities for the geographic selection function ...191
Figure 111: Class diagram for the Geo selection by list user scenario ..195
Figure 112: Sequence diagram for the list geo selection method ..197
Figure 113: Class diagram for the Geo selection by place name search user scenario.........................199
Figure 114: Class diagram for the Geo selection by address search user scenario202
Figure 115: Sequence diagram showing the the interaction from controller to the builder for Search by

Address method of geo select ...203
Figure 116: Class diagram for the Geo selection by map user scenario..205
Figure 117: Sequence diagram for the Geo selection by map method ..206
Figure 118: Class diagram for the Geo within geo method of geo selection ..209
Figure 119: Place in functional view ..211
Figure 120: Class diagram depicting the main classes used for the subject selections methods. This is for

DT, QT, GCT, GRT and TM contexts. ...213
Figure 121: Key metadata entities for subject selection...214
Figure 122: Class diagram for subject selection by list method ...216
Figure 123: Contexts DT, QT and GCT. ..217
Figure 124: Context TM subject select by list. ...218
Figure 125: Class diagram for subject select by keyword. ...220
Figure 126: Sequence Diagram subject selection by keyword...221
Figure 127: Key data model entities used for subject selection by keyword. ...222
Figure 128: Class diagram for subject selection by topic. ..227
Figure 129: Sequence diagram for subject selection by topic..228
Figure 130: Sequence Diagram for GRT context...229
Figure 131: Class diagram for custom table subject selection. ..231
Figure 132: Part 1 of sequence diagram depicting subject selection for custom tables.232
Figure 133: Part 2 of sequence diagram depicting subject selection for custom tables.233
Figure 134: Part 3 of sequence diagram depicting subject selection for custom tables, only if the user has

performed a data element keyword search. ..233
Figure 135: Key data model entities used custom tables subject selection. ..234
Figure 136: Canonical Selection Path ...235
Figure 137: View Adapter Class Diagram..237
Figure 138: Table Services Class Diagram ...238
Figure 139: Table Keys Class Diagram ...239
Figure 140: Table Factory Class Diagram ...239
Figure 141: Table Domain Objects Class Diagram..240
Figure 142: Table Builder Class Diagram..241
Figure 143: TableServlet initialization Sequence Diagram...242
Figure 144: TableServlet Request Processing Sequence Diagram ...242
Figure 145: Detailed Tables Service Key Creation Sequence Diagram...243
Figure 146: Detailed Tables Service Table Creation Sequence Diagram ..244
Figure 147: Quick Table Service Key Creation Sequence Diagram...245
Figure 148: Quick Tables Service Table Creation Sequence Diagram..246
Figure 149: Geographic Comparison Tables Key Creation Sequence Diagram246
Figure 150: Geographic Comparison Tables Row Stub Builder Sequence Diagram248
Figure 151: Geographic Comparison Tables Table Creation Sequence Diagram249
Figure 152: Economic Detailed Datasets Key Creation Sequence Diagram..250
Figure 153: Economic Detailed Datasets Table Creation Sequence Diagram.......................................251
Figure 154: Geographic Ranking Tables Service Key Creation Sequence Diagram252
Figure 155: Virtual Table Data Model ..253
Figure 156: Matrix Table Data Model ..254
Figure 157: Economic Detailed Datasets Data Model ...255
Figure 158: EconDataset Class Diagram...256
Figure 159: Canonical Selection Path with Economic Detailed Datasets...257
Figure 160: List by Sector Class Diagram ...258

Date Last Printed: 9/26/06 Page 11 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 161: Keyword Search Class Diagram...259
Figure 162: Filter by Geography/Industry/Data Item Class Diagram..260
Figure 163: List by Sector Sequence Diagram ..261
Figure 164: Get Dataset List Sequence Diagram ..262
Figure 165: Keyword Search Sequence Diagram..263
Figure 166: Get Dataset by Keyword List Sequence Diagram...264
Figure 167: Filter by Geography/Industry/Data Item Sequence Diagram...265
Figure 168: Dataset Match Servlet Sequence Diagram...268
Figure 169: Data Model ...269
Figure 170: ITableTemplate Class Diagram ..273
Figure 171: IDataElement Class Diagram..274
Figure 172: Custom Tables Service Key Creation Sequence Diagram..275
Figure 173: Custom Tables Service Table Creation Sequence Diagram ...276
Figure 174: Matrix Table Data Model used to produce Custom Tables ...277
Figure 175: Download a Table in Canonical Selection Path ..278
Figure 176: DBDownloadServlet Class Diagram ...280
Figure 177: DBDownloadServlet initialization ..281
Figure 178: DBDownloadServlet getFormatter Sequence Diagram...282
Figure 179: DBDownloadServlet Request Processing Sequence Diagram ...283
Figure 180: DBDownloadServlet getGeographicContent Sequence Diagram..284
Figure 181: DBDownloadServlet getAdditionalFiles Sequence Diagram ...285
Figure 182: Data Model for Geographic Content ...286
Figure 183: Related Items Window – Prior to user selections..287
Figure 184: Related Items Window - After user selections ..288
Figure 185: Class Diagram for Related Items subsystem..290
Figure 186: Sequence diagram for retrieving related subjects for a virtual table....................................291
Figure 187: Hydration of Related Items View Adapter ...292
Figure 188: Sequence diagram for retrieving Related Item Links ..293
Figure 189: Data Model for Related Items Subsystem ..295
Figure 190: Class Diagram – Controller and Service-Factory-Builder Relationships303
Figure 191: Class Diagram - Builder, SQL Statement Relationships – Class diagram...........................304
Figure 192: Sequence diagram for building keyword search results..305
Figure 193: step one: finding a list of states and program years..306
Figure 194: step two: finding products that match selected geography ...306
Figure 195: Threading Sequence Diagram..307
Figure 196: Data Model for Keyword Search...308
Figure 197: Data model - Get a list of geographies that match a location name....................................309
Figure 198: Data Model - Search for products by geography (Thematic Maps, Matrix Tables, Virtual

Tables) ..310
Figure 199: Data Model - Search for products by geography (Reference Maps)310
Figure 200: Data Model - Search for products by geography (html, PDF files)311
Figure 201: Data Model - Get Program Years ...311
Figure 202: Metadata Element Hierarchy ..313
Figure 203: Class Diagram for Metadata Browser subsystem ...314
Figure 204: Sequence diagram for displaying metadata information for a quick table (QT)...................316
Figure 205: Sequence diagram for retrieving detailed information for a quick table (QT), given a dataset

ID ..317
Figure 206: Sequence diagram for retrieving detailed information for a survey, given a survey Id317
Figure 207: Sequence diagram for displaying metadata information for a thematic map (TM)318
Figure 208: Sequence diagram for retrieving detailed information for a thematic map, given a dataset ID

..319
Figure 209: Data Model for Metadata Browser Subsystem..320
Figure 210: Hierarchy of Controller Classes Used for Drawing Maps ..323
Figure 211: Hierarchy of Controller Classes Used for Boundaries Page ...324
Figure 212: Hierarchy of Controller Classes Used for Features Page ...325
Figure 213: Hierarchy of Service Classes Used for Drawing Maps..326

Date Last Printed: 9/26/06 Page 12 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 214: Hierarchy of View Adapter Classes Used for Drawing Maps ..327
Figure 215: Hierarchy of View Adapter Classes Used for Boundaries & Features Page327
Figure 216: Reference Map Draw Controllers ...330
Figure 217: Map Domain Hierarchy...331
Figure 218: Reference Map Boundaries and Features Controllers ..332
Figure 219: Controller and Service Interaction for Drawing Reference Maps ..333
Figure 220: Service & Domain Interaction for Drawing Reference Maps ...334
Figure 221: Map Domain Interaction 1 – BuildDisplay ...335
Figure 222: Map Domain Interaction 2 – BuildMap..336
Figure 223: Map Domain Interaction 1 – Refresh ..337
Figure 224: Controller & Service Interaction for Boundaries and Features ..338
Figure 225: Map View Group Metadata Tables ...339
Figure 226: Sample Boundaries Page for Reference Map...340
Figure 227: Class diagram of major controller level classes for thematic maps.....................................346
Figure 228: Class diagram of major classes for service and domain layer for thematic maps347
Figure 229: Sequence diagram showing create a thematic map (1 of 3) ...348
Figure 230: Create a thematic map continued (2 of 3)...348
Figure 231: Create a thematic map continued (3 of 3)...349
Figure 232: Data Model for thematic maps..350
Figure 233: High-level sequence of events from start to finish ..352
Figure 234: Class Diagram for Real-Time Logging of User Requests ...355
Figure 235: Class Diagram for Off-Line Processing of Log Files ...356
Figure 236: Sequence diagram real-time logging of user requests..357
Figure 237: Sequence diagram for off-line processing of log file ...358
Figure 238: Sequence diagram for building robot profile hashtable...359
Figure 239: Data Model for User Activity Logging subsystem..360
Figure 240: Class Diagram for Load Query ...364
Figure 241: Class Diagram for Save Query ...365
Figure 242: Sequence diagram for Load Query...366
Figure 243: Sequence diagram for Save Query ..367
Figure 244: Industry selection navigation ..371
Figure 245: Industry Codes Class Diagram ...372
Figure 246: Industry Types Class Diagram..373
Figure 247: Industry Selection Sequence Diagram..375
Figure 248: Data Model ...377
Figure 249: Bookmarking Flow chart ...380
Figure 250: Bookmarking Class Diagram ..383
Figure 251: Sequence diagram for bookmarking. ..384
Figure 252: Operational/process view environments ...385
Figure 253: Basic operational process view ..390
Figure 254: Production environment operational/process overview...391
Figure 255: Interactions between WebSphere and Mapping Subsystems...392
Figure 256: Interactions between WebSphere and Mapping Subsystems when a Leg is Unavailable ..392
Figure 257: Interactions between WebSphere and Mapping Subsystems when a Leg’s WebSphere

Subsystem is Unavailable ...393
Figure 258: Interactions between WebSphere and Mapping Subsystems when a Leg’s Mapping

Subsystem is Unavailable ...393
Figure 259: Upgrading using the ER environment ...394
Figure 260: Internal Review Environment..395
Figure 261: Development Environment ...396
Figure 262: System Startup / Shutdown Sequence ...397
Figure 263: Leg Startup / Shutdown Sequence ...398
Figure 264: AFF Physical Deployment View...402
Figure 265: Development process overview..406
Figure 266: ClearQuest overview ..410
Figure 267: ClearCase overview ...410

Date Last Printed: 9/26/06 Page 13 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 268: Development environments overview..411
Figure 269 - Build and deploy workflow ...412
Figure 270: Sizing and Performance "Funnel" ...414
Figure 271: User and user activity count relationships ..416
Figure 272: Maximum simultaneous users ..416
Figure 273: Maximum concurrent users ..417
Figure 274: High-level overview of AFF network and component relationships418
Figure 275: Custom Advisors ..420
Figure 276: AFF source tree root directory ..427

Date Last Printed: 9/26/06 Page 14 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

TABLE OF TABLES
Table 1: Revision History Log. If this log has not been updated in more than 120 days, assume the

content is dated...2
Table 2: AFF Users..35
Table 3: AFF product subsystems..38
Table 4: AFF page layout panel areas ...44
Table 5: Global navigation menu hyperlinks...45
Table 6: SAFF pages ...50
Table 7: Geographic selection methods...58
Table 8: Product selection methods...59
Table 9: Menu Actions menu headings..64
Table 10: Options menu entries ...65
Table 11: Filter Rows menu entries ...65
Table 12: Print / Download menu entries ...66
Table 13: CWS pages..69
Table 14: AFF Central components ...75
Table 15: AFF System Tools components ...77
Table 16: AFF Catalogs...120
Table 17: AFF Database Components...128
Table 18: Maintenance Processing Components...128
Table 19: Internal Monitoring Components ..128
Table 20: External Monitoring Components ...129
Table 21: Third-Party Components ..130
Table 22: Thread Pool Tuning Parameters ...142
Table 23: Cache tuning parameters...148
Table 24: Load Values Reported by ADV_ckwas...152
Table 25: Summary level coverage for SAFF and CWS ..162
Table 26: Possible search scenarios ...163
Table 27: Critical init parameters used by application. ...167
Table 28: Named servlets using gov.census.saff.controller.navigation.SaffSearchContext167
Table 29: Named servlets using gov.census.saff.controller.navigation.AcsSaffSearchContext..............167
Table 30: SAFF Dataset Page named servlets ..171
Table 31: SAFF Dataset Page named servlets initialization parametersClass Diagrams.......................171
Table 32: Bit mask values and MDR conditions to enable/disable geo selection methods.....................186
Table 33: Named servlets used by the geo select by list method by context..186
Table 34: Named servlets used by the geo select by place name method by context187
Table 35: Named servlets used by the geo select by address method by context187
Table 36: Named servlets used by the geo select by map method by context188
Table 37: Named servlets used by geo select geo within geo select method by context188
Table 38: Multiple geography selection support by context..189
Table 39: Context-specific subject selection configuration items ...211
Table 40: Servlet details for subject selection by list ..212
Table 41: Servlet details for subject selection by keyword ...212
Table 42: Servlet details for subject selection by topic ...212
Table 43: Named Servlets..236
Table 44: Named Servlets for Select an Economic Datasets Path...257
Table 45: SQL Query for Data Element Selection..271
Table 46: SQL for Characteristic Iteration Outer-Join...271
Table 47: SQL Template for Custom Tables..272
Table 48: Geography Selection Named Servlets ...272
Table 49: Download Format by Table Types..278
Table 50: Download a Table Named Servlets with Corresponding Formatter and Service Classes.......280
Table 51: Content-Type for Formatter Classes ..280
Table 52: Named Servlets for Related Items subsystem ...289
Table 53: Advanced Search named servlets..301

Date Last Printed: 9/26/06 Page 15 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Table 54 Named Servlets for Metadata Browser subsystem..314
Table 55: Glossary of Terms..321
Table 56: Structure of dynamic map cache table ...328
Table 57: Named Servlets Used for Reference Maps ..329
Table 58: Metadata Tables Used in Mapping Subsystem ..340
Table 59: Named servlets for Thematic Maps..346
Table 60: List of tables used by Thematic Maps and their purpose..351
Table 61: Context sensitive parameters for REDOLOG...354
Table 62: Named servlets for Save Query function..363
Table 63: Named servlets for Load Query function ..363
Table 64: Named servlets using gov.census.saff.controller.navigation.CwsSearchContext...................370
Table 65:Named servlets using gov.census.saff.controller.navigation.AcsCwsSearchContext370
Table 66: Named servlets used to render table results. ...370
Table 67: Named servlets for CWS thematic maps..370
Table 68: Named Servlets for Detailed Statistics Industry Selection ..372
Table 69: Named Servlets for Quick Reports Industry Selection..372
Table 70: AFF Task Deployments by Environment and Node...403
Table 71: Edge, Busy and Unavailable Server Deployment by Node..403
Table 72: Server and Database Connections ...404
Table 73: Server and Database Naming Conventions ..404
Table 74: AFF Developer Workstation Hardware by Job Role ...405
Table 75: AFF Developer Workstation Software by Job Role...405
Table 76: Typical LRTE configuration settings ...408
Table 77: AFF activity counts...415
Table 78: AFF user counts...416
Table 79: User Agents reported in the September 2004 WebTrends monthly report424
Table 80: Platforms reported in the September 2004 WebTrends monthly report..................................424
Table 81: Subdirectories in the Java Source/gov/census directory ..427
Table 82: Subdirectories in the Java Source/gov/census/aff directory ...428
Table 83: Subdirectories in the Java Source/gov/census/aff/controller directory....................................430
Table 84: Architecturally significant files in the Java Source/gov/census/aff/dataAccess directory431
Table 85: Architecturally significant files in the Java Source/gov/census/aff/debug directory.................431
Table 86: Subdirectories in the Java Source/gov/census/aff/domain directory.......................................433
Table 87: Architecturally significant files in the Java Source/gov/census/aff/key directory433
Table 88: Architecturally significant files in the Java Source/gov/census/aff/logging directory433
Table 89: Architecturally significant files in the Java Source/gov/census/aff/persistence directory.........434
Table 90: Architecturally significant files in the Java Source/gov/census/aff/pool directory435
Table 91: Architecturally significant files in the Java Source/gov/census/aff/registry directory435
Table 92: Subdirectories in the Java Source/gov/census/aff/service directory436
Table 93: Architecturally significant files in the Java Source/gov/census/aff/session directory...............437
Table 94: Architecturally significant files in the Java Source/gov/census/aff/utildirectory437
Table 95: Subdirectories in the Java Source/gov/census/aff/viewAdapter directory...............................438
Table 96: Subdirectories in the Java Source/gov/census/cws directory ...438
Table 97: Subdirectories in the Java Source/gov/census/infrastructureservices directory......................439
Table 98: Subdirectories in the Java Source/gov/census/phc directory..439
Table 99: Subdirectories in the Java Source/gov/census/saff directory..440
Table 100: Subdirectories in the Web Content directory ..440
Table 101: Architecturally significant files in the Web Content directory...441
Table 102: Architecturally significant files in the Web Content/arcims directory441
Table 103: Architecturally significant files in the Web Content/css directory ..441
Table 104: Subdirectories in the Web Content/home directory ..442
Table 105: Main pages within the Web Content/home directory tree ...442
Table 106: Architecturally significant files in the Web Content/home directory.......................................443
Table 107: Architecturally significant files in the Web Content/http-tars directory...................................443
Table 108: Subdirectories in the Web Content/img directory..444
Table 109: Architecturally significant files in the Web Content/img directory..444

Date Last Printed: 9/26/06 Page 16 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Table 110: Subdirectories in the Web Content/javascript directory ..444
Table 111: Architecturally significant files in the Web Content/javascript directory.................................445
Table 112: Subdirectories in the Web Content/jsp directory...446
Table 113: Architecturally significant message files in the Web Content/properties directory446
Table 114: Architecturally significant general metadata files in the Web Content/properties directory ...446
Table 115: Architecturally significant servlet initialization metadata files in the Web Content/properties

directory ..447
Table 116: Architecturally significant system configuration files in the Web Content/properties directory

..448
Table 117: Architecturally significant files in the Web Content/scripts directory448
Table 118: Architecturally significant files in the Web Content/vendor directory.....................................448
Table 119: Subsystem support by program matrix ...450
Table 120: Business Rules for KEYWORDS ...452
Table 121: Business Rules for DESCRIPTION..453
Table 122: Acronyms and Abbreviations..455
Table 123: Glossary...458

Date Last Printed: 9/26/06 Page 17 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

1. INTRODUCTION

1.1. Scope
This document is a comprehensive guide to American FactFinder (AFF), one of the major systems in
the Data Access & Dissemination Systems (DADS) program. The content of this document reflects the
current functionality found in AFF Release 10.2.

1.2. Audience
The target audiences for this document are the staffers who maintain and enhance AFF.

1.3. Purpose
This document describes the overall architecture and technical design of AFF and contains the
information necessary for technical resources working on AFF to understand the basic architectural
principals that serve as the foundation of AFF.

This document is a complete re-issue and is substantially different from earlier versions.

The expected lifetime of this document is the same as AFF itself.

Section 2. Architectural Representation describes the methods used to represent AFF architecturally
within this document.

Section 3. Architectural Goals and Constraints lists the core AFF requirements that shaped AFF
architectural decisions.

Section 4. Functional View describes AFF functionality.

Section 5. Logical View explains the AFF logical architecture.

Section 6. Operational/Process View describes AFF operational and process information.

Section 7. Deployment View explains the AFF deployment architecture.

Section 8. Implementation View describes the AFF development environment.

Section 9. Sizing and Performance View lists AFF size and performance characteristics.

Section 10. Quality describes the techniques used to ensure quality and accuracy in AFF.

1.4. What is AFF?
AFF is an Internet dissemination system that presents Census Bureau survey results from programs in
the form of tables and maps. The program and survey combinations include:

• Decennial Census – 1990 and 2000 surveys

• Economic Census – 1997 and 2002 surveys

• American Community Survey – 1996 to 2004 surveys

• Population Estimates Program – 2004 survey

• Annual Survey of Manufacturers – 2003 survey

1.4.1. Important Definitions
The terms and concepts described below apply throughout this document.

Date Last Printed: 9/26/06 Page 18 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

1.4.1.1. AFF System / AFF Application
The term AFF System refers to the hardware and software systems and subsystems that comprise AFF;
the AFF System includes both Commerical Off-The-Shelf (COTS) software and customized software and
content. The term AFF Application refers to the custom content and Java language-based software
application that is the core of the AFF System.

AFF System

Hardware

Figure - AFF System and Application
Version - 1.0 Date - 2005-06-13

COTS

AFF
Application

Figure 1: AFF System / Application

1.4.1.2. Census vs Survey / Count vs Characteristic
Census Bureau-specific usage defines defines a census as a 100-percent sample survey, and a count
as a value tabulated from a census and a characteristic as a value determined from a survey. AFF uses
the same architectural mechanisms to disseminate censuses and surveys, and their counts and
characteristics. As a result, the distinction between these terms is more of a metadata and presentation
issue than a technical design issue and this document uses the terms census and survey interchangeably
as well as the terms count and characteristic.

A significant exception to the above is that American Community Survey (ACS) characteristics have
upper and lower bound values; as a result, support for ACS includes special handling for these upper and
lower bound values.

However, when the term census or survey is combined with a name, then the combination refers to a
specific census or survey, such as the Decennial Census or the American Community Survey.

1.4.1.3. Language Support (Puerto Rico / Spanish)
AFF uses primarily an English-language based user interface. In addition, AFF supports the Spanish
language dissemination of selected Census 2000 data for Puerto Rico geographies. As a result, portions
of the user interface are available in both English and Spanish based upon the program and data
selected.

1.4.1.4. Sagent
AFF uses address files for geocoding. The address files and supporting code were originally provided by
a company known as Sagent Technlogoy. As a result, the DADS project has habitually referred to the
files associated with geocoding as “Sagent” address files. However, in 2003 Sagent was acquired by
Group 1 Software and the product is now known as Centrus GeoStan. However, in keeping with current
DADS terminology, the geocoding files are referred to as “Sagent” files throughout this document.

1.5. References
Functional specifications are found in the document repository under the directory:

I:\BA\02 Functional Specifications\AFF\

Content specifications are found in the document repository under the directory:

Date Last Printed: 9/26/06 Page 19 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

I:\BA\03 Content\

User Interface specifications are found in the document repository under the directory:
I:\BA\04 UI Design\

Technical design documents are found in the document repository under the directory:
I:\AFF\AFF Code Deployments\

Organized into subdirectories by release (AFF Rx) and cross-release documents (I:\AFF\AFF Code
Deployments\AFF Code Release Generic).

Technical architecture documents are found in the document repository under the directory:
I:\AFF\AFF Technical Architecture\

Operational documents can be found in the document repository under the directory:
I:\Infrastructure

and on-line at the System Administration website:
http://sa.dads.census.gov/docs/nsa.html

Current operational information about AFF environments can be found at the AFF Central website:
http://affcentral.dads.census.gov/

http://sa.dads.census.gov/docs/nsa.html

Date Last Printed: 9/26/06 Page 21 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

2. ARCHITECTURAL REPRESENTATION

This chapter provides a high-level overview of the AFF architecture. The AFF architecture is described
from several perspectives, including:

• Functional View

• Logical View

• Operational/Process View

• Deployment View

• Implementation View

The following sections within this chapter contain high-level perspectives for each view. The following
chapters describe each view in detail, one view per chapter.

The document structure is loosely based upon the IBM Rational Unified Process and the IBM Global
Services Method and is customized for the needs of the DADS project.

2.1. Functional View
The Functional View describes what AFF does and discusses the architecturally significant functionality
in the AFF system.

As shown in Figure 2 below, AFF is a collection of user interfaces layered around Core AFF functionality;
the Core AFF functionality contains multiple subsystems, with each subsystem responsible for producing
a particular type of result product (such as a table or map).

Figure - AFF Funtional Overview 2
Version - 1.1 Date - 2004-11-05

User
Interface

A Core AFF
(CAFF)

User
Interface

C

User
Interface

B

User
Interface

D

Subsystem # 1

Subsystem # 2 Subsystem # 3

Subsystem # 4

Figure 2: Functional view of user interfaces, Core AFF, and AFF subsystems

Date Last Printed: 9/26/06 Page 22 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Each subsystem has an associated workflow, or series of steps, that builds a query based upon user
selections, executes the query, and then presents the result products.

Each step in the workflow is usually associated with a request and response between the user’s agent
(typically a browser) and AFF as shown below in Figure 3.

User

Request

Response

Request

Response

...

...

Request

Response

AFF Workflow

Step 1

Step 2

Step N

User
Agent

(browser)

Step ...

Figure - Workflow Sample 2
Version - 1.1 Date - 2004-11-05

Figure 3: Functional view of the requests and responses associated with the steps in a workflow

A workflow is represented as a sequence of boxes (steps) with arrows showing the sequence between
the steps as shown below in Figure 4. The box label describes the step. Some steps have Actions that
allow users to act upon the current step without proceeding to the next step in the workflow; these actions
are labeled arrows that return to the originating step. Optional steps are show in dashed boxes.

Step 1 Step 3 Results

Modify Action

Step 2

Selection
Action

...

Figure - Workflow Sample Subsystem 2
Version - 1.0 Date - 2004-11-05

Figure 4: Functional view of the steps in a workflow

AFF’s component-based design allows many workflows to share the same steps and actions.

For detailed descriptions of the AFF user interfaces, subsystems, workflows, and workflow steps, see
chapter 4. Functional View.

2.2. Logical View
The Logical View describes how AFF works and discusses the architecturally significant classes, the
organization of these classes into service packages and components, the organization of these packages

Date Last Printed: 9/26/06 Page 23 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

and components into AFF subsystems, and how these pieces fit and work together. In addition, the
logical view also describes the dynamic aspects of the architecture.

For a flexible, extensible, and maintainable implementation, AFF is based upon industry standard design
patterns, including:

• Model View Controller (MVC)

• Abstract Factory

• Factory Method

• Adapter

• Builder

• Producer-Consumer

The logical view shows the implementation details of these design patterns using class diagrams and
sequence diagrams. Figure 5 below uses a class diagram to show the relationships among the most
commonly used layers in AFF.

Figure - Design Pattern Class Diagram
Version - 1.0 Date - 2004-11-05

Controller

AFF JSP

Service Factory Builder AFFConnection

ViewAdapter Domain Objects

cached

1

Figure 5: Design pattern class diagram (UML)

The logical view also shows details for selected subsystems and functionality using class diagrams and
sequence diagrams. For example, the feedback function class diagram is shown below in Figure 6.

AFFServlet

viewAdapterClass

callPageNamed()
setViewAdapterClass()
setVIewAdapterClass()
getViewAdapter()
handleThrowable()

FeedbackServlet

init()
processRequest()
saveFeedback()
mailTo()
saveFeedbackToDB()

Figure - Feedback Class Diagram
Version - 1.0 Date - 2004-11-05

Figure 6: Feedback function class diagram (UML)

The corresponding sequence diagram for the feedback function is shown in Figure 7 below.

Date Last Printed: 9/26/06 Page 24 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

:AFFServlet :FeedbackServlet

Figure - Feedback Sequence Diagram
Version - 1.0 Date - 2004-11-05

3: parseParameter(req)

4: safeUrlValue()

5: saveFeedback()

6: saveFeedbackToDB()

7: mailTo()

1: doPost(HttpServletRequest, HttpServletResponse)

2: processRequest(HttpServletRequest, HttpServletResponse)

Figure 7: Feedback function sequence diagram (UML)

In addition, the logical view contains, as shown in Figure 8 below, visual sequence diagrams that walk
through the high-level relationships between the AFF components and classes when executing a single
step in a workflow.

Browser

HTTP Server

WebSphere

Controller Layer

Service Layer

Factory Layer

JSPI

G

H

J

Metadata
Repository Builder Layer

F

Data Warehouse /
Geospatial DB

E

H
ig

h-
to

-L
ow

 L
ev

el
 C

om
po

ne
nt

s

D
om

ai
n

O
bj

ec
ts

A

C

B

D

Figure - Logical Overview 2
Version - 1.1 Date - 2005-01-24

Figure 8: Logical view visual sequence diagram example

Date Last Printed: 9/26/06 Page 25 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

These visual sequence diagrams are the same for many workflow steps due to the extensive use of the
MVC design pattern within AFF. In these diagrams, each significant processing step is shown as a
labeled arrow between logical components; in Figure 8 shows the processing of a request from the user’s
agent (Browser) to AFF (A), the path through AFF (B to I) logical components, and the response (J) back
to the user.

User requests A are passed by the HTTP Server to the WebSphere Application Server which invokes the
Controller layer B associated with the URL’s request. The Controller layer parses the request and passes
the request C to the appropriate Service layer for processing. The Service layer invokes D the
appropriate Domain layer to obtain the necessary information; this information, retrieved E from the Data
Warehouse and/or the Geospatial Database, is passed back (F, G, and H) to the Controller layer which
invokes a Java Server Page (JSP) that builds the response, or view, returned J to the user. The Metadata
Respository, a database of metadata (or “data about the data”), controls how the Domain layer processes
the user request, and determines where (in which databases) is the data used to fulfill the user’s query.

For detailed descriptions of the AFF logical view classes and components, see chapter 5. Logical View.

2.3. Operational/Process View
The Operational/Process View describes the relationships between AFF components and tasks
(processes and threads) regardless of hardware. This view also describes who supports and controls
each component and each component’s basic operational tasks. The operational/process describes the
components from an abstract perspective; the Deployment View describes how these components are
assembled from a hardware perspective.

AFF developers use developer workstation (DWS) environments for coding and unit testing before
delivering the AFF application code to the execution environments. AFF has four major execution
environments: Development (DEV), Product Assurance (PA), Internal Review (IR) and Production
(PROD). AFF is debugged in the DEV environment, tested in the PA environment, reviewed in the IR
environment, and then released to the public in the PROD environment. These environments are shown
below in Figure 9:

Figure - Operational-Process View Environments
Version - 1.2 Date - 2005-06-02

Public
User

BOC
SME

Developers

DEV
Development
Environments

IR
Internal
Review

Environments

PROD
Production

Environment

PA
Product

Assurance
Environments

Testers

DWS
Developer

Workstation
Environments

Developers

Deliver

Leg 1 Leg 2

Release Release Release

ER

Figure 9: Operational/process view environments

As shown below in Figure 10, the basic operational process view, AFF is a collection of interacting
processes:

• Client – Runs on the user’s computer system to provide the graphical user interface and
communications interface to AFF.

• Internet – Communications link between the user and AFF.

Date Last Printed: 9/26/06 Page 26 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Edge Server – Accepts the incoming client request messages from the Internet and forwards these
messages to the appropriate AFF server for processing. The Edge Server is used in production
environments to provide load-balancing and failover redirection services. The Edge Server is also
used in some environments between the Application Server(s) and Mapping Server(s)

• Busy Server – Handles incoming client request messages when the Edge Server determines that
AFF is overload and cannot handle the request.

• Unavailable Server – Handles incoming client request messages when the Edge Server determines
that AFF is unavailable.

• Web Server – Handles incoming client request messages when the Edge Server determines that
AFF is available. The Web Server handles requests for static content and forwards requests for
dynamic content to the Application Server. Static content includes HTML, CSS, JavaScript, and PDF
files. AFF uses IBM’s HTTPServer as the Web Server. The HTTPServer has a multi-process
architecture.

• Application Server – Handles incoming client request messages for dynamic content using Java-
based servlets. The Application Server uses the metadata from the Metadata Repository (MDR)
databases for user navigation and uses this metadata with the detailed data in the Data Warehouse
(DW) databases for creating and population result products such as tables and maps. The Application
Server creates and sends requests to the Mapping Server to handle geospatial processing including
geo-coding and map image creation. AFF uses IBM’s WebSphere as the Application Server.
WebSphere has a multithreaded architecture.

• Session Database – Stores the context information associated with user sessions; this data store is
managed by the Application Server.

• Metadata Repository (MDR) and Data Warehouse (DW) Databases – Stores the non-spatial data
used by the Application Server handle navigation requests and to populate table and map requests.
There are three databases: (1) the English-language Metadata Repository (EMDR), (2) the Spanish-
language Metadata Repository (SMDR), and (3) the Data Warehouse (DW).

• Spatial Databases – Stores the spatial data used by the Mapping Server to geo-code addresses and
create maps.

• Mapping Server – Handles requests from the Application Server for address geo-coding and map
image creation. AFF uses ESRI’s ArcIMS for map image creation; ArcIMS in turn uses ArcSDE to
access and manage the Spatial Databases. ArcIMS and ArcSDE both have a multithreaded
architecture.

Date Last Printed: 9/26/06 Page 27 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Mapping
Subsystem

WebSphere
Subsystem

Edge ServerBusy Server Unavailable Server

Application Server

Web Server

Edge Server

User

Session
Database DW

Spatial
Databases

Mapping Server

Figure - Operational-Process View 1
Version - 1.2 Date - 2006-06-02

Client

Component not present in all environments

Internet

EMDR/
SMDR

Figure 10: Basic operational process view

As shown in below in Figure 11, the production (PROD) environment is organized into two redundant
legs for high availability, performance, and maintainability.

Date Last Printed: 9/26/06 Page 28 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Leg 2Leg 1

Edge ServerBusy Server Unavailable
Server

HTTP Server

WebSphere
Application Server

WebSphere
Application Server

HTTP Server

Edge Server

User

Session
Database

Data
Warehouse

English MDR

Spanish MDR

Data
Warehouse

English MDR

Spanish MDR

Spatial
Databases

Spatial
Databases

ArcIMS

ArcSDE

ArcIMS

ArcSDE

Figure - Operational-Process View 2
Version - 1.5 Date - 2005-06-13

Internet

Client

Figure 11: Production environment operational/process overview

To fully utilize the hardware in the PROD environment, each leg executes multiple instances (clones) of
the AFF application running within the WebSphere Application Server and multiple instances of the
ArcIMS Server. An additional PROD system, known as External Review (ER), is used to preview and test
releases in the production environment and is, conceptually, a third leg that attaches to another leg’s
databases.

The other (DEV, PA, and IR) environments are similar, but non-redundant, versions of the production
environment.

For detailed descriptions of the AFF environments, see chapter 6. Operational/Process View.

2.4. Deployment View
The Deployment View describes the deployment of AFF across hardware and network resources, and
describes the hardware and allocation of tasks from the Process View to the physical hardware.

For the latest high-level diagram of the deployment view, see Figure 26: DADS Deployment – High-level
View in the DADS High Level Systems Architecture document. An abstract version of the deployment
view is shown below in Figure 12.

Date Last Printed: 9/26/06 Page 29 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure - Deployment View Overview
Version - 1.2 Date - 2005-06-13

Census
FTP Server

DADS, Bowie

AFF INTERNAL - Mod 2PRODUCTION - DMZ - Mod 2 Cage

SP2
Production

Web/App/DB Servers

SP2 Control
Workstation

SP Switch

Switch Rack

GB Switch

Busy Servers Edge Servers

Unavailable
Server

ESS Control
Workstation

ESS Storage
Databases

Tape
Library

SP1
Internal Review

Web/App/DB Servers

SP1 Control
Workstation

ESS Control
Workstation

ESS Storage
DatabasesTape Library

Switch Rack

SP3
Development

Web/App/DB Servers

SP3 Control
Workstation

SP4
Sandbox

Web/App/DB Servers

SP4 Control
Workstation

SP SwitchSP Switch

Internet Census
Intranet

Router

DADS, Suitland
DADS System

Administration Worksations
PHC Report System

Production Workstations
DADSO Team
Workstations

BOC Beta Testing
Environment

Switch Firewall

Router

TOPAZ

USERS

Figure 12: Deployment View Overview

As shown above, the internal development and test environments are physically and logically separate
from the external production environment.

For additional information on the AFF deployment view, see chapter 7. Deployment View and the current
deployment documents under the directory I:\Infrastructure\PCB Generic\08 WProd.

2.5. Implementation View
The Implementation View describes the software development environment and how it is organized,
including the components and files used to assemble and release AFF.

For detailed descriptions of the AFF implementation environment, see chapter 8. Implementation View.

The source code tree is described in Appendix A. Source Code Tree.

Date Last Printed: 9/26/06 Page 31 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

3. ARCHITECTURAL GOALS AND CONSTRAINTS

3.1. Architectural Goals
American FactFinder (AFF) was created to fulfill the DADS Mission:

To become the Premier Disseminator of Data and
Information for the Bureau of Census over the Web

3.1.1. Background
In the early 1990’s, data dissemination was an expensive and inefficient paper publishing process. The
Decennial Census reports or other pre-defined Census data products were difficult to find and use; many
were never used.

The Bureau of Census continues to collect and tabulate huge amounts of data, including:

• Decennial Census

• Economic Census, Surveys

• American Community Survey

• Geographic Data and Maps

3.1.2. Challenges
In addition, the Bureau of Census (BOC) had the following challenges with data dissemination:

• "Democratization of data", the ability to provide data to a wide range of users, including:

• Federal, State, and Local Governments.

• Census State Data Centers.

• Commercial data users.

• Schools.

• The Public.

• Foreign inquiries.

• Administration Initiatives, including:

• Emphasize customer needs in delivering products and services.

• Improve access and make data more accessible through the Internet, while protecting security
and confidentiality.

• Provide opportunity to link to other Federal data bases through the Internet.

• Constant budget pressure to disseminate data efficiently and inexpensively.

3.1.3. The Business Drivers
The above challenges lead the BOC to undertake a strategic program, the Data Access &
Dissemination System (DADS), to create the American FactFinder (AFF) system as the solution to key
business drivers; including:
• Advancing the BOC mission to be:

Date Last Printed: 9/26/06 Page 32 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

“..the preeminent collector and provider of timely, relevant and quality data about people and the
economy of the United States”

• Improving value to the customers.

• Improving the data product creation process.

• Leveraging technology to make data more accessible.

These drivers translated into technology goals:
• Use the Internet as the primary dissemination vehicle for Census data.

• Support the widest range of internal and external users with minimal restrictions on end-user
hardware platform.

• Use a deployment approach to provide extensibility for future enhancements and additional data
sources.

• Provide scalability to support a rapidly increasing user load.

3.1.4. The Solution
The AFF solution:

• Provides dissemination of Census data via the Internet.

• Is scalable, able to meet both current and future demands.

• Builds upon a set of COTS software.

• Follows industry standards.

• Uses proven methods and technologies.

• Has an advanced Internet architecture.

• Provides flexible and customizable data retrieval capability using dynamic requests.

• Supports very large volumes of data associated with census records.

• Supports multiple data sources that are updated regularly.

• Ensures compliance with Title 13 regulations.

• Maintains user selections as users navigate within AFF for the duration of the user’s session.

• Contains rich geographic mapping functionality in addition to its more traditional table displays.

• Supports development, test and production environments.

• Supports a wide range of users, from novice to expert, with a state-of-the-art user interface.

• Uses a metadata driven user interface for flexibility and ease of maintainance.

• Is object-oriented; allowing the incorporation of new capabilities and data sources over time.

• Provides rapid data dissemination to meet reporting deadlines.

3.1.5. Architectural Principals
The architectural principals for the current-day AFF evolved from the experience gained during the
development of the original AFF solution. The current focus of AFF is incremental improvements; the
requirements are defined and described in detail in the functional and non-functional requirements
documents.

The software architectural principals for AFF are:

Date Last Printed: 9/26/06 Page 33 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

1. Use Internet standards-based solutions when feasible with an objective of moving towards Web
Standards, Java Enterprise Standards, and Federal Standards, including:

1. Extensible Hypertext Markup Language (XHTML)

2. Extensible Markup Language (XML)

3. Cascading Style Sheets (CSS)

4. ECMAScript (JavaScript)

5. Portable Document Format (PDF)

6. Java Servlet

7. Java Server Pages (JSP)

8. Java Database Connectivity (JDBC)

9. HyperText Transfer Protocol (HTTP)

10. File Transfer Protocol (FTP)

11. Connection Pooling

12. Java Development Kit (JDK)

13. Java 2 Platform, Enterprise Edition (J2EE)

14. Structured Query Language (SQL)

15. Internationalization

16. Section 508 Compliance

17. Year 2000 Compliance

2. Separate architectural layers for presentation, business, and data access (model, view, and
controller) to improve extensibility, re-usability, maintainability, and performance.

3. Use component-based, object-oriented development practices where business logic is partitioned into
reusable components to reduce code redundancy.

4. Minimize the number of places where business logic must be programmed.

5. Only session cookies are needed; no other browser cookies are required.

3.1.6. Stakeholders
AFF must be able to effectively and efficiently meet the needs of these data dissemination data providers:

• Decennial Census

• American Community Survey Office

• Economics Planning and Coordination Division

• Population Division

The following data provider supports the above data providers:

• Geographic Division

AFF must meet satisfy the following stakeholders that have budgetary and policy control over AFF:

• Decennial Systems and Contracts Management Office (DSCMO)

• BOC Executive Leadership

• DOC leadership

Date Last Printed: 9/26/06 Page 34 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Congress

3.1.7. Users
More than being just AFF users, these users are the customers of the BOC:

Cateogry Examples
Governments • Federal

• State

• Local

• Congress

• Tribal Organizations

• Foreign

• Policy Makers

Education • Universities

• Schools

• Research Organizations

Business • National

• International

• Small

• Medium

• Large

Associations • Civic

• Professional

• Trade

• Religious

Libraries • Public

• University

• Law

• Corporate

• Private

Media • Television

• Radio

• Print

• Web

The General Public

Date Last Printed: 9/26/06 Page 35 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Table 2: AFF Users

3.1.7.1. User Categories
Based upon analysis of visitors to Census web sites, AFF users are grouped into four basic categories:

• Surfers

• Manipulators

• Portrayers

• Extractors

This analysis is described in the document Segmentation of Census Web Site Users based on MSO
Survey Data, October 2002, Hermiz (IBM).

AFF is designed to meet the needs of each user category.

3.1.8. Surfers
Surfers are visitors to the site out of curiosity or non-professional reasons. Ease of use, entertainment,
and interactivity tend to appeal to these users, who usually focus on local information. These users are
not familiar with Census terminology or the scope of Census capabilities.

The Simple AFF and Kid’s Corner user interfaces, and the Quick Tables, Geographic Comparison Tables,
Data Profiles, Multi-Year Profiles, Ranking Tables, Subject Tables, Thematic Map, and Reference Map
subsystems, are targeted to Surfers.

3.1.9. Manipulators
Manipulators are regular users who prefer to use AFF functionality to search for data, create tables and
maps, and customize the results. These users are somewhat familiar with Census terminology.

The Data Sets and Core AFF user interfaces, and the Search, Detailed Tables, Custom Table, and
Industry Build Query subsystems, are targeted to Manipulators.

3.1.10. Portrayers
Portrayers are users seeking pre-packaged, integrated information to answer specific questions. They
require national or localized data using quick and easy access methods for work, community, or
educational purposes. They tend to accept the information in whatever form is available.

The Simple AFF user interface, and the Quick Tables, Geographic Comparison Tables, Data Profiles,
Multi-Year Profiles, Ranking Tables, and Subject Tables subsystems, are targeted to Portrayers.

3.1.11. Extractors
Extractors are expert level “power” users that tend to prefer to extract, or download large amounts of raw
data for analysis using their own systems. These users are familiar with Census terminology and use
Census data to perform some aspect of their job. They often purchase several Census products, such as
comprehensive CD-ROMS and would like the latest data updates as quickly as possible.

The Data Sets and Core AFF user interfaces, and the Detailed Tables, Custom Table, Industry Build
Query, and Download subsystems, are targeted to Extractors.

3.2. Constraints
The constraints in AFF fall into several categories, including business rules and non-functional
requirements, described in the functional specification documents. These categories are briefly described
below.

Date Last Printed: 9/26/06 Page 36 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

3.2.1. Census Bureau Policies, Standards and Guidelines
Serveral of the Census Bureau policies, standards and guidelines constraining the architecture of AFF
are listed below:

• Web-page standards, including logos and basic functions such as FAQs and Feedback.

3.2.2. Federal Regulations
In additional to the standard Federal regulations associated with web sites, such as cookies and Section
508, BOC web sites must also ensure compliance with Title 13.

Title 13 non-disclosure issues create “holes” in the navigation; this leads to:

• Structured user navigation paths to avoid “dead-ends” in geography selections.

• Exception handling for missing data.

 See this document’s sections on cookies and Section 508 for details on these regulations; see
http://www.access.gpo.gov/uscode/title13/title13.html for details on Title 13.

3.2.3. Survey Data Issues
Due to nature of census and survey data, including geographic boundaries changing over time, and the
data item definition and methodology differences between surveys, AFF functionality limits the types of
data manipulation available to users, including but not limited to:

• No user-defined geographies.

• No user-defined calculations or tabulations (with limited exceptions).

• No queries that join different surveys within a program or surveys between programs.

3.2.4. COTS Software Licensing Issues
COTS software licensing and budgetary issues have placed some constraints on AFF, such as:

• No direct support for batch geocoding users.

3.2.5. Non-Function Requirements
There are multiple non-functional requirements (NFRs) dealing with supported user agents (browsers),
performance, security and availability.

 See the NFR document listed see the Document Inventory Spreadsheet for details.

3.2.6. Web-based
The web-based nature of AFF adds a number of constraints on AFF, including but not limited to:

• The sheer volume of data available adds limits on the number of geographies and tables that can be
selected by users for any given query; this ensures a responsive system for all and reasonably sized
web pages.

• The presentation of the user interface is provided by user agents (browser clients) outside the direct
control of AFF, as a result, the AFF GUI is designed to work on a wide-range of user agents.

http://www.access.gpo.gov/uscode/title13/title13.html

Date Last Printed: 9/26/06 Page 37 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4. FUNCTIONAL VIEW

This chapter provides a high-level description of the functionality within AFF that allows users, via a web
browser or other user agent, to build and execute queries then view the query results in tabular or map
form.

4.1. Workflows
The series of steps (or tasks) required to build and execute a query and to view and modify a query result
is called a workflow. Each step in a workflow usually consists of one or more request(s) and response(s)
between the user and AFF; a sample workflow is shown below in Figure 13.

User

Request Main Page

Main Page

Select Data Sets Page

Data Sets Page

Select Data Set / Result Type

Select Geographies Page

Geography Selection(s)

Select Tables Page

Other Selection(s) (if any)

Results Page

Modify Result Actions (optional)

Modified Results Page

AFF Workflow

Step 1

Step 2

Step 3

Step 4

Step N

Step
N+1

User
Agent

(browser)

Step ...
Other Selection Page(s) (if any)

Table Selection(s)

Figure - Workflow Sample
Version - 1.1 Date - 2004-12-23

Figure 13: Workflow example

From the user’s perspective, each step is handled by a different web page or by a different action on a
web page.

Date Last Printed: 9/26/06 Page 38 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.2. Products
AFF supports multiple result types or products; each product has a separate workflow, controlled by a
subsystem that handles the queries and the processing for the product.

A subsystem can share workflow steps with other subsystems, and a subsystem can invoke another
subsystem. As a result, a specific product can be the final result in more that one workflow. For example,
a demographic profile can be obtained via the data sets page and via Simple AFF (SAFF).

The major product subsystems, grouped by type, are listed below in Table 3:

Type Products

The Core subsystems are the basic result products
used by all programs and surveys within AFF. Most
programs within AFF can support these product
subsystems.

• Detailed Table (DT)

• Reference Map (RM)

• Advanced Search (AdvSearch)

• Help / Metadata Browser (HELP)

The Standard subsystems are the enhanced result
products that can be adapted for any program or
survey within AFF if the appropriate metadata and/or
database views are defined.

• Custom Table (CT)

• Geographic Comparison Table (GCT)

• Quick Table (QT)

• Thematic Map (TM)

The Economic subsystems are the custom result
products used only by the Economic program surveys
within AFF.

• Industry Build Query (IBQ)

• Geographic Quick Report (GQR)

• Industry Quick Report (IQR)

• Product (Industry) Quick Report (PIQR)

• Product Quick Report (PQR)

The ACS subsystems are the custom result products
used only by the American Community Survey (ACS)
program surveys within AFF.

• ACS Data Profile (ADP)

• Geographic Ranking Table (GRT)

• Multi-Year Profile (MYP)

• Narrative Profile (NP)

• Subject Tables (ST)

• Sub-Population Profiles (SP)

• Profiles of Selected Population Groups /
Iterated Profiles (IP)

Table 3: AFF product subsystems

Note: Over time, as AFF grows and matures, the Economic and ACS subsystems may become Standard
subsystems, and the Standard subsystems may become Core subsystems.

4.3. Workflow and Subsystem Notation
This section describes the notation used to represent workflows and subsystems associated with result
productions.

A sample subsystem workflow functional view is shown in Figure 14 below.

Date Last Printed: 9/26/06 Page 39 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Select a
Program

Select
Geographies

Select
Tables

Result(s)

Modify Result Actions

Select a
Data Set

Add / Remove

Add / Remove

Other
Selections

Figure - Sample Subsystem
Version - 1.0 Date - 2004-11-08

Build Query (Navigational Steps)

Figure 14: Sample subsystem workflow functional view

In this view, the user performs the following navigational steps to build a query, execute the query, and
display the query results on the Result(s) page:

• Select a Program

• Select a Data Set

• Select Geographies (users can select one or more using Add / Remove actions)

• Select Tables (user can select one or more using Add / Remove actions)

• Other Selections (optional)

Once the Result(s) page is show, the user can use the Modify Result Actions to change the
presentation of the Result(s) page.

The notation used to describe a subsystem workflow is shown in Figure 15 and Figure 16.

Entry Point for another AFF Subsystem

Function/Page for Current Subsystem
Current

Subsystem
Entry Point

Pop-Up Window for Current Subsystem

Figure - Functional View Notation Overview 1
Version - 1.0 Date - 2004-11-08

Figure 15: Functional view notation scheme part 1

A major workflow step (or function) is shown as a box; a box with a thick border is a step in the current
workflow while a box with a thin border is a step in another subsystem’s workflow. A step with a shadow
is implemented as a pop-up dialog window. A step drawn with a dashed-line is a data-driven optional
step. Two or more steps surrounded by a dotted line are either a functional unit or a descriptive grouping
such as “navigational steps”.

Entry points to the current subsystem workflow are shaded yellow while entry points into other
subsystems are shaded green.

An arrow connecting two or between steps shows the normal path between the steps, a curved line to
and from the same step shows the actions available within that step. A line with one arrow represents a
unidirectional link between steps while a line with arrows at both ends is a bi-directional link between
steps.

Date Last Printed: 9/26/06 Page 40 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 hyperlinks that deep-link into core AFF functionality.
 hyperlinks to BOC resources (URLs and PDFs) not stored within AFF.
 hyperlinks to external URLs outside of census.gov.Other

has hypertext links to and from

has hypertext link toA B

C D
E

Action that
modif ies

current page

AFF

AFF

Other

BOC

BOC

Optional Step

Figure - Functional View Notation Overview 2
Version - 1.0 Date - 2004-11-08

Figure 16: Functional view notation scheme part 2

Small thick arrows with labels represent important links to other subsystems and non-AFF system(s) and
are not an integral part of the subsystem.

 The detailed functional specifications mentioned in this section are defined in the Traceability
Application available from I:\BA\05 Tools\ Traceability Application.mdb.

4.4. User Interfaces
Due to the large volume and complexity of the Census data, and the wide level of expertise (or lack
thereof) of users visiting AFF, AFF has multiple user interfaces (UIs); each UI is targeted at different
groups of users.

The UIs for external users are:

• Main Page

• Simple AFF (SAFF)

• Data Sets Page (DSP)

• Census 2000 Puerto Rico (Spanish Language)

• Core AFF (CAFF)

• Congressional Web Site (CWS)

• American Indian and Alaska Native (AIAN) Data and Links

• Kid’s Corner (KC)

• Basic Facts (BF)

• Crawler Launch Pad (CLP)

In addition, the administrative UIs for DADS internal developers and system administrators are:

• Web Based Administration (AFF Central and AFF System Tools)

• Command Line Administration (SA)

Date Last Printed: 9/26/06 Page 41 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Key

Simple AFF
(SAFF)

Congressional
Web Site

(CWS)

American Indian and
Alaska Native (AIAN)

Data and Links

Basic
Facts
(BF)

Census
2000

Puerto Rico
(Spanish

Language)

Data Sets
Page
(DSP)

Kid's
Corner

(KC)

Core AFF
(CAFF)

Command Line
(SA)

External User
Interface SubsystemInternal User

Interface

Advanced Search
(AdvSearch)

ACS Data Profile
(ADP)

Narrative Profile
(NP)

Custom Table
(CT)

Detailed Table
(DT)

Geographic Comparison Table
(GCT)

Geography Quick Reports
(GQR)

Geographic Ranking Table
(GRT)

Industry Build Query
(IBQ)

Industry Quick Reports
(IQR)

Multi-Year Profile
(MYP)

Quick Table
(QT)

Product Quick Reports
(PQR)

Product (Industry) Quick Reports
(PIQR)

Thematic Map
(TM)

Reference Map
(RM)

Public Use Microdata Sample
(PUMS)

Help / Metadata
Browser

User
Statistics

Administration
(AFF Central /

AFF System Tools)

Figure - AFF Functional Overview
Version - 1.1 Date - 2004-12-23

Main Page

Crawler
Launch Pad

(CLP)

Figure 17: AFF Functional View Overview

As the figure shows, many of the UIs are wrappers around AFF, reducing the domain exposed to the
users and simplifying access to the tables and maps in AFF. Under the covers, the various UIs use the
same Core AFF functionality and subsystems to produce products.

Date Last Printed: 9/26/06 Page 42 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Core AFF
(CAFF)

Quick Table Subsystem

Navigational Steps

Figure - UI - Workflow Sample
Version - 1.0Date - 2004-11-08

Select
Geographies

Select
Tables

Quick
Table

Result(s)

Modify Result
ActionsAdd / Remove Add / Remove

Select
a Table

Congressional Web SiteSimple AFF

Data Sets Page

Select a
Geography

Select
a Table

Select a
Geography

Select a
Program

Select a
Data Set

Program
and Data
Set Pre-
Seleted

Program
and Data
Set Pre-
Seleted

AIAN

Select a
Table

Select a
Tribe

Program
and Data
Set Pre-
Seleted

Figure 18: Quick table subsystem workflow example with different user interfaces

The navigational workflow steps for a result product can vary by UI, as shown above in Figure 18 that
highlights interactions between several UIs and the Quick Table (QT) subsystem.

In the SAFF and CWS UIs, the Program and Data Set are pre-selected by the UI and these UIs have their
own simplified geography and table selection workflows. After all selections are made by the user, these
UIs call the QT subsystem for the desired result product using a deep-link (bookmark) URL.

In contrast, the Data Sets Page UI has the user select the Program and Data Set and then starts the QT
subsystem at the beginning and the QT subsystem dynamically walks the users through all the steps in
the workflow to produce the result product.

4.4.1. User Interface Guidelines
The basic design and guidelines for all AFF external user interfaces are described in the following
subsections.

4.4.1.1. General Approach
In general, AFF uses consistent and industry standard patterns and metaphors throughout the user
interface.

To help the user understand where they are within a workflow the current task’s context is provided using
page titles and/or breadcrumbs.

4.4.1.2. Section 508
The AFF user interface is designed to be Section 508 compliant. While the maps generated by AFF are
themselves are not Section 508 compatible, AFF satisfies Section 508 regulations by making the map
data available in table format for download which meets the “A text equivalent for every non-text element
shall be provided” requirement of section 508.

Date Last Printed: 9/26/06 Page 43 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.2. Main Window Page Layout
As shown in Figure 19 below, the same basic web page layout is used for all user interfaces except AIAN
and Kid’s Corner.

BOC Standard Header

Global Navigation Menu

Left Navigation Bar
(optional)

Content Well

BOC Standard Footer

Figure - Standard Page Layout
Version - 1.1 Date - 2004-12-23

Figure 19: AFF basic web page layout

The basic web page layout contains five major panel areas and are described in Table 4 below.

Panel Area Description

BOC Standard Header The standard BOC web page banner image with a hyperlink to census.gov
web site. This panel spans the top of the page.

Global Navigation Menu This page element identifies (brands) the user interface and contains
navigation hyperlinks common to all pages within the user interface. This
panel spans the page below the BOC standard header and above all other
content.

Left Navigation Bar A collection of navigation hyperlinks that change the content well; these
hyperlinks are often context-sensitive to the content well contents. This
optional page element, if present, spans the height of the page starting from
the Global Navigation Menu.

Content Well This is the panel where the user interacts with AFF workflows to make query
selections, create table and map results, and then modify the result. The
content well contents and functionality vary on a page-by-page basis; the
following items are usually found within the content well:

• A descriptive title for the current page and workflow (task)

• Breadcrumbs with the context of the current page within the current
workflow

• Selections for building a query or the results of a query

• Options for manipulating the selections and/or the results on the
current page

BOC Standard Footer The standard BOC web page footer with hyperlinks to other census.gov
pages. This panel spans the bottom of the page below the content well. This
footer is on user interface entry pages and other high-level pages, such as

Date Last Printed: 9/26/06 Page 44 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Panel Area Description
SAFF, CWS, and AIAN but not on other pages; this is by design in order to
prevent users from inadvertently leaving a product subsystem in the midst of
building a query or manipulating a query result.

Table 4: AFF page layout panel areas

4.4.2.1. Global Navigation Menu
The Global Navigation Menu hyperlinks appear on every page within a user interface (except Kid’s
Corner).

Main

Glossary

Site Map

Search

Feedback

FAQs

Help

Global
Navigation

Menu

Figure - Global Navigation Functional View
Version - 1.0 Date - 2004-11-08

Figure 20: Global Navigation Menu functional view

The global navigation menu hyperlinks are described in Table 5 below:

Menu Item Action

Main Jump to the main page (entry point) for the current UI and language; the default is English.

Search Jump to the advanced search page entry page for the current UI and language. CWS and
AIAN do not support Search; all other UIs use the Advanced Search subsystem.
See the section Advanced Search Subsystem for details.

 For content and functional details, see the Advanced Search functional specification
(SEARCH_1).

Feedback Open a pop-up window with a user questions and comments form for the current UI. After
submission, the feedback contents are emailed to a BOC SME for answering. CWS
feedbacks are sent to CAO SMEs at cao@census.gov; all other feedbacks are sent to
DADS SMEs at dadso.american.factfinder@census.gov.

 For content and functional details, see the Feedback functional specification (FDBK_1).

FAQs Open a pop-up window with the frequently asked questions (FAQs) and answers for the
current UI. AIAN does not have a FAQ, CWS uses a single web page, and all other UIs use
the ask.census.gov system initialized to the topic AmericanFactFinder.

mailto:cao@census.gov

Date Last Printed: 9/26/06 Page 45 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Menu Item Action

Glossary Open a pop-up window containing definitions of terms used in the current UI. All UIs have
one or more web pages customized for the current UI and language.

 For content and functional details, see the Glossary functional specification (HELP_2).

Site Map Jump to a page containing the site map for the current UI. The site map page contains
hyperlinks to the major subsystems and web pages within the current UI. Only the Main
Page, SAFF, Data Sets and CAFF support Site Map.

 For content and functional details, see the Site Map functional specification
(STMAP_1).

Help Open a pop-up window containing context-sensitive help and other information for the
current UI, language and web page. AIAN does not support Help, CWS uses a single static
web page, and all other UIs use static web pages generated out of the EPSS system.

 For content and functional details, see the Help functional specification (HELP_1).

Table 5: Global navigation menu hyperlinks

 For content and functional details, see the Global Navigation functional specification (NAV_1),

4.4.2.2. Left Navigation Bar
Several UIs, including Main Page, SAFF, and CWS, have a left navigation bar with hyperlinks for related
pages within that user interface.

 For content and functional details, see the Left Navigation Bar functional specification (NAV_2).

4.4.3. Pop-Up Window Page Layout
Pop-up windows are used to explain or modify the contents of the main window. As a result, pop-up
windows have a variety of page layouts. In general, each pop-up window has a Close or Cancel
button; the Help subsystem is a notable exception to this general rule.

Date Last Printed: 9/26/06 Page 46 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.4. Main Page User Interface
The Main Page user interface is main entry point to AFF, targeted at all users; this functionality is
available only in English. An alternate main page is used for Spanish, which is described later.

Figure 21: Main Page user interface screen capture

The published URL for this page is:

Date Last Printed: 9/26/06 Page 47 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

http://factfinder.census.gov

which is redirect to:
http://factfinder.census.gov/home/saff/main.html

The Main Page contains hypertext links to other AFF user interfaces and pages within AFF and the BOC;
these hyperlinks direct users to AFF workflow starting points. The Main Page functional view is shown in
Figure 22 below.

BOC

Data Sets Page

Advanced Search

Kid's Corner

Census 2000 Puerto Rico

AIAN

Main
Page

AFF

SAFF

Figure - Main Page Functional View
Version - 1.0 Date - 2004-11-09

Figure 22: Main Page user interface functional view

The Main Page content well is updated regularly with:

• Highlights to new information within AFF

• Highlights to new information available at the BOC web site

• The latest value of the current United States population clock

The Main Page has a message-of-the-day function used to alert users to scheduled downtimes.

 For content and functional details, see the AFF Main Page functional specification (MP_1).

http://factfinder.census.gov/

Date Last Printed: 9/26/06 Page 48 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.5. Simple AFF User Interface
The Simple AFF (SAFF) user interface is a wrapper application around AFF, targeted at the casual user;
this functionality is available only in English.

The SAFF functional view is shown below in Figure 23.

Other

Other
BOC

Splash PagesSplash Pages

Topic PagesTopic Pages

BOCFact Sheet

About the Data

Data Sets Page

Maps and Geography

Reference Shelf

Tools

Change Geography

People

Housing

Business and
Government

Topic Pages

Splash Pages

AFF

Main
Page

BOC
AFF

BOC

AFF

BOC

AFF

Other

BOC
AFF

BOC

BOC
AFF

Figure - Simple AFF Functional View
Version - 1.2 Date - 2005-03-01

Change Year

Change Geography Change Year

Change Geography Change Year

Change Geography

AFF

Population Finder

Change Geography

AFF

Figure 23: Simple AFF (SAFF) user interface functional view

SAFF allows a user to display information for a selected geography and survey year from a subset of the
geography summary levels supported by AFF; such as:

• United States

• State

Date Last Printed: 9/26/06 Page 49 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• County

• City/Town or Place

• ZIP Code or ZCTA

• Census Tracts

A user selects a geography using the results of a simple search by name or search by address; the user
can change the selected geography at any time by executing another search. Using the left navigation
bar, the user can switch between the Fact Sheet, People, Housing, and Business and Government pages
for the selected geography.

 For details on the SAFF geographic selection process for the Fact Sheet page, the People page, the
Housing page, and the Business and Government page, see the SAFF Geographic Selection
functional specification (GS_2).

The functional descriptions for the major SAFF UI web pages are briefly described below in Table 6.

SAFF Page Page Contents
Functional

Specification

Population
Finder

Population values and related links for the user-selected geography. Population
Finder
(POPFIND_1)

Fact Sheet Values from the general demographic, social, economic, and housing
characteristics for the user-selected geography, organized by survey year
and characteristic type. The hyperlinks link to the profiles (Quick Tables or
ACS Data Profiles), thematic maps, briefings, or Ranking Tables.

Fact Sheet
(FS_1)

People Hyperlinks to tables and maps of population characteristics for the user-
selected geography, organized by survey year and subject. The tables and
maps are deep-links into Core AFF and to other BOC web pages. The
links vary by the geography summary level of the user-selected
geography. Also has links to Topic Pages associated with population data.

People
(LINKS_1)

Housing Hyperlinks to tables and maps of housing characteristics for the user-
selected geography, organized by survey year and subject. The tables and
maps are deep-links into Core AFF and to other BOC web pages. The
links vary by the geography summary level of the user-selected
geography. Also has links to Topic Pages associated with housing data.

Housing
(LINKS_2)

Business
and
Government

Hyperlinks to tables and maps of economic survey results for the user-
selected geography, organized by survey year and subject. The tables and
maps are deep-links into Core AFF and by links to other BOC web pages.
The links vary by the geography summary level of the user-selected
geography. Also has links to Topic Pages associated with
business/economic data.

Business &
Government
(LINKS_3)

About the
Data

An overview of the programs and the products available in AFF with
hyperlinks to Topic Pages explaining the individual programs and to the
related Data Sets Page entries for selected programs and products.

Census
Overview
(CON_1)

Maps and
Geography

An overview of the maps types available in AFF, the AFF geography
hierarchy, and hyperlinks to geography resources.

Maps &
Geography
(CON_4)

Reference
Shelf

Hyperlinks to reports, publications, data and statistics, other BOC
resources, and related sites and resources.

Reference
Shelf (REF_1)

Date Last Printed: 9/26/06 Page 50 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

SAFF Page Page Contents
Functional

Specification

Tools Hyperlinks to other web-based data extraction tools, special interest tools,
1990 census data, international information, the state data centers, and
other external sites.

Tools
(TOOLS_1)

Topic Pages Each topic page explains a topic about information available within the
SAFF interface. The number and content of Topic Pages changes over
time as programs and program data are added, updated, and removed
from AFF.

Topic Page
Content
(CON_3)

Splash
Pages

Each splash page provides an overview of a program or a data set within a
program. The number and content of Splash Pages changes over time as
programs and program data are added, updated, and removed from AFF.

Splash Page
Content
(CON_2)

Table 6: SAFF pages

SAFF searches against the Census 2000 and ACS 2003 geographies for the Fact Sheet, People, and
Housing pages and against the 2002 Economic Census for the Business and Government pages.

Date Last Printed: 9/26/06 Page 51 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.6. Data Sets Page User Interface
The Data Sets Page user interface is the main entry point to the table and mapping subsystems in Core
AFF, targeted at the expert user; full functionality is available in English and Census 2000 results for
Puerto Rico are available in Spanish. This user interface is sometimes bookmarked by expert users for
direct access to the data.

Figure 24: Data Sets Page user interface screen capture

The URL for this page is:
http://factfinder.census.gov/servlet/DatasetMainPageServlet

http://factfinder.census.gov/servlet/DatasetMainPageServlet

Date Last Printed: 9/26/06 Page 52 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The Data Sets Page is a tabbed user interface with, generally, one tab per program; each tab contains
the data sets, by year and survey, associated with the program. After a data set is selected, the products
available for the selected data set are shown as hyperlinks to the product subsystems. The Data Sets
Page functional view is shown in Figure 25 below.

BOC

Tables

Maps

Data Sets
Page

Select Program

RM

QT

TM

DT GCT

IQR

GQR

PQR

PIQR

IBQ

Select Data Set

Metadata Browser

CT

Clear all selections

Enter a table
number

List all tables

List all maps

Load Query

GRT

ADP

MYP NP

AFF
Figure - Data Sets Page Functional View
Version - 1.1 Date - 2005-06-13

Main Page

PUMS

Products

AES

ST

Figure 25: Data Sets Page user interface functional view

The Data Sets Page walks the user through the selection of the Program and Data Set before invoking a
product subsystem’s workflow.

 For content and functional details, see the Data Set Selection functional specification (DS_1)

The Load Query pop-up window provides the user the ability to upload and execute a previous saved
query.

 For content and functional details, see the Save & Load Query functional specification (SLQ_1).

The Enter a table number pop-up window allows the user to start the workflow to create a table result
product by entering the table’s table number.

The List all tables and List all maps pages allows the user to start the workflow to create a specific
result product by selecting the product from a list of all table/map products for the selected data set.

 For content and functional details, see the Data Sets with Tables and Maps (DS_2), Table List
Selection (TS_3), and Map List Selection (MS_2) functional specifications.

In addition, the Data Sets Page provides links to the Metadata Browser for the metadata associated with
the program and data set.

 For content and functional details, see the Metadata Browser functional specification (HELP_3).

Date Last Printed: 9/26/06 Page 53 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.7. Crawler Launch Pad (CLP) User Interface
The Crawler Launch Pad (CLP) user interface is targeted to low-end user agents (text-based browsers
such as Lynx and Links) and Internet robots (such as Googlebot and MSNBot) that do not support
enhanced user agent features such as JavaScript or Cookies. This user interface is a collection of static
web pages with hyperlinks to a wide selection of AFF table and map result products.

Figure 26: CLP user interface screen capture

The URL for this user interface is:
 http://factfinder.census.gov/home/clp/en/clp.html

This content undergoes continual maintenance as the team gains a better understanding of the targeted
user agent behavior. The current CLP functional view is shown in:

Select
Result
Type

AFF

CLP
Main
Page

Figure - CLP Functional View
Version - 1.0 Date - 2004-12-23

Select
Geography

Select
Specific
Product

Select
Data
Set

Select
Program /

Survey

Figure 27: CLP user interface subsystem workflow functional view

http://factfinder.census.gov/servlet/BasicFactsServlet?_lang=es

Date Last Printed: 9/26/06 Page 54 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.8. Census 2000 Puerto Rico (Spanish Language) User Interface
The Census 2000 Puerto Rico (Spanish Language) user interface is a wrapper application around AFF
with the user interface implemented in the Spanish language for Census 2000 and geographies within
Puerto Rico. This user interface is also known as the Censo 2000 Puerto Rico and as the Spanish
Language Main Page user interface.

Figure 28: Census 2000 Puerto Rico (Spanish Language) user interface screen capture

The URL for this user interface is:
http://factfinder.census.gov/servlet/BasicFactsServlet?_lang=es

http://factfinder.census.gov/servlet/BasicFactsServlet?_lang=es

Date Last Printed: 9/26/06 Page 55 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The Census 2000 Puerto Rico user interface is a customized version of the pre-Release 9.21 AFF Basic
Facts page and provides quick access paths to many commonly used AFF tables and maps via drop-
down lists. The user selects the type of result (Tablas or Mapas), a topic (Muéstreme …), a geographic
selection (para...), and then clicks the Siga button to generate the desired table or map with a deep-link
into Core AFF. The Census 2000 Puerto Rico functional view is shown in Figure 29 below.

Census
2000

Puerto
Rico

(Spanish
Basic
Facts)

Show me...

For Geography...

Data Sets Page

Main Page Table Result Product

Map Result Product

Advanced Search

BOC

AFF

Switch to
English

AFF

AFF
Select result type...

Figure - Census 2000 Puerto Rico Functional View
Version - 1.0 Date - 2004-11-09

Figure 29: Census 2000 Puerto Rico (Spanish Language) user interface functional view

This user interface only supports the Census 2000 SF-1, SF-2, SF-3, and SF-4 data sets for Puerto Rico
with the following result products:

• Detailed Tables

• Geographic Comparison Tables

• Quick Tables

• Reference Maps

• Thematic Maps

In addition, this user interface provides links to:

• Main Page User Interface

• Data Sets Page User Interface

• Thematic Maps Subsystem

• Reference Maps Subsystem

• Other documents and web sites with Spanish reference materials

Date Last Printed: 9/26/06 Page 56 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.9. Core AFF User Interface
The Core AFF user interface is the collection of subsystems that walk users through the creation of tables
and maps; full functionality is available in English and with limited functionality in Spanish.

The typically workflow to create a result product (table or map) in the Core AFF subsystem is shown
below in Figure 30.

Data Sets Page

Program
Selection

Geography
Selection(s)

Product
Selection(s)

Other
Selection(s)
if available

Result(s)

Modify Actions

Data Set
Selection

Add /
Remove

Add /
Remove

Add /
Remove

1 2 3 4 5 6

Figure - Core AFF Functional View
Version - 1.1 Date - 2004-12-23

Figure 30: Core AFF (CAFF) user interface subsystem workflow functional view

Step 1. The user makes a Program Selection on the Data Sets Page that specifies the data provider.

Step 2. The user makes a Data Set Selection on the Data Sets Page that specifies which year and
survey, the dataset, to use as the data source, and the product (path) selection.

Step 3. The user makes Geography Selection(s) for the geographies to include in the result product.

Step 4. The user makes Product Selection(s) for the desired result products; these result products are
selected by table numbers and maps themes.

Step 5. The user makes Other Selection(s) as specified by the workflow, if any.

Step 6. The last step in a workflow is the Result(s) page that displays the result product(s) created by the
query defined in the previous steps. The user can change the result product(s) using Modify
Actions provided by menus or by using breadcrumbs to jump back to a previous step and modify
the query.

For economic program result products, the workflow steps are slightly different; see Figure 31 below:

Date Last Printed: 9/26/06 Page 57 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

1) Filter is one of:
Geography
Industry
Product by Product Line
Product by Industry

Select a
Program

Result(s)

Menu Actions
Select a
Data Set

Select Table Format

Select Quick
Report

Select
Filter1

Result(s)

Menu Actions

Select an Economic
Data Set

Filter by Filter Type
2

Scroll Actions

Figure - Core AFF Economic Functional View
Version - 1.1 Date - 2005-06-14

2) Filter Type is one of
Geography
Industry or Product
Data Item
Other Dimension

Figure 31: Core AFF (CAFF) Economic only user interface subsystem workflow functional view

See the description of the Economic subsystems for details:

• Geography Quick Reports (GQR) Subsystem

• Industry Build Query (IBQ) Subsystem

• Product (Industry) Quick Reports (PIQR) Subsystem

• Product Quick Reports (PQR) Subsystem

Generally, all workflow steps are data-driven by metadata. These workflow steps are described in more
detail in the following sections.

4.4.9.1. Program Selection
Program Selection is made either:

• Explicitly by the user on the Data Sets Page, or

• Automatically by the user interface.

Only one program can be selected and used at a time. Usually, users select the source of their data
(Program and Data Set) before selecting geography and/or a result type.

Supported programs are:

• Decennial Census (DEC)

• American Community Survey (ACS)

• Economic Census (ECN)

• Population Estimates (PEP)

• Economic Annual Surveys (EAS)

 For content and functional details, see the Data Set Selection functional specification (DS_1)

Date Last Printed: 9/26/06 Page 58 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.9.2. Data Set Selection
Data Set Selection is made either:

• Explicitly by the user on the Data Sets Page, or

• Automatically by the user interface.

The subsystems available for the data set are shown after the user selects the data set. Only one data
set can be selected and used at a time.

 For content and functional details, see the Data Set Selection functional specification (DS_1)

4.4.9.3. Geographic Selection(s)
Geographic Selection(s) is the first step after the user selects a subsystem for a data set. Depending
upon the workflow for the subsystem, a user can select a single geography or multiple geographies.

Usually, geographic selection is by the geographies for which data is available, this step occurs after the
Data Set Selection step as geography support varies by program and data set; this ordering prevents
navigational dead-ends. The only exceptions are reference maps, which are available for all geographies
regardless of whether program specific data is currently available and which do not require a data set
selection.

The user interface for this step is a tabbed interface, with each method of geographic selection on a
separate tab. When multiple geographic selections are supported, users can use any combination of
geographic selection methods to select geographies.

Table 7 below describes the five major method of geographic selection; not all methods are supported by
all subsystems.

Selection Method Description

List Select geographies from a hierarchical list; this is the method supported by most
subsystems and is the default geographic selection method.

Name Search Search for the geographic area of interest by entering the name of the area as a
search term. The user can limit the search by geographic type and to an area
within the geography tree (hierarchy) during the selection process.

Address Search Search for geographies related to an entered address using either:

• Street address, city, and state

• Street address, zip code

Map Select geographies by clicking a point on a map; the user picks a geography from
the geographies found at the selected point. The user can adjust the map using
Map Actions.

Geo Within Geo Search for geographies of a given geographic type that are contained within or
related to another geographic type. For example, counties within a Congressional
District.

Table 7: Geographic selection methods

To help in the identification of geographies, a Map It button is available for non-map selection methods;
this button displays a reference map for a selected geography.

To simplify the system for casual users, a Show all geography types / Show major geography types
only toggle allows the user to hide less frequently used geography types when making selections.

When multiple geographic selection is supported, the Add and Remove buttons allow geographies to
be added to, and removed from, the set of selected geographies.

Date Last Printed: 9/26/06 Page 59 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 For content and functional details, see the Geographic Selection functional specification (GS_1).

4.4.9.4. Product Selection(s)
Depending upon the workflow, a user can select a single or multiple results in the Product Selection(s)
step. This step is occurs after the Geography Selection step to avoid unsupported geography and
product combinations and navigational dead-ends.

Each table product has a table identifier and name. Each thematic map product has a theme identifier
and name. Metadata defines the tables and themes available for the currently selected program, survey,
data set and geographies.

Table 8 below describes the three major methods of product selection; not all methods are supported by
all subsystems.

Selection Method Description

By Subject Search and select a product using list of pre-defined subjects.

By Keyword Search and select a product from the results of query on a user-supplied keyword.

Show All Select a product from the list of all available products; this is the default method.

Table 8: Product selection methods

When multiple product selections are supported, the Add and Remove buttons allow products to be
added to, and removed from, the set of selected products.

To help in the identification of tables and themes, a What’s this? button displays the metadata
information for a selected table or theme using the metadata browser.

 For content and functional details, see the Table Selection (TS_1) and the Theme (Map) Selection
(MS_1) functional specifications.

4.4.9.5. Other Selection(s)
Depending upon the workflow, additional query criteria can be selected by the user in the Other
Selection(s) step. These other selections can be single or multiple selections. This step is occurs after
the Product Selection step as other selections support varies by product; this ordering prevents
navigational dead-ends.

When multiple selections are supported, the Add and Remove buttons allows selections to be added
to, and removed from, the current selection set.

Examples of other selections include:

• Population Groups

• Custom Table Data Elements

• Custom Table Filters

Date Last Printed: 9/26/06 Page 60 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.9.6. Result(s)
Result pages are usually either tables or maps.

4.4.9.6.1. Table Results
Table result pages may display one or more tables.

Figure 32: Typical table result page screen capture

Date Last Printed: 9/26/06 Page 61 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.9.6.2. Map Results
Map result pages display a single map.

Figure 33: Typical map result page screen capture

Date Last Printed: 9/26/06 Page 62 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.9.6.3. Result Page Modify Actions
Users can modify the contents of the Result(s) page using the Modify Actions that appear on the page.
The Modify Actions are grouped into the following broad categories:

• Breadcrumbs are hyperlinks across the top of the content well that provides navigation to previous
steps in the subsystem workflow. Breadcrumbs are available on most pages, not just on result pages.

• Scroll Actions are hyperlinks in the content well that provide navigation to other pages when the
results span more than one web page.

• Map Actions are changes to a map that occur when a user clicks on the map or on map page
elements.

• Menu Actions are drop-down menus across the top of a results page that allow the user to modify or
extract the current result.

4.4.9.6.4. Breadcrumbs
Breadcrumbs are used to navigate within user interfaces and subsystems between selection pages and
the result products page. Figure 34 below shows how breadcrumbs appear on AFF web pages.

Figure 34: Screen capture of breadcrumb from a Geographic Selection(s) page

The entries (hyperlinks) in the breadcrumb correspond to the steps in the normal path through a
subsystem (from left to right) and may not reflect the actual path taken by the user to get to the current
step. All breadcrumbs start at the main page (Main) and end at the result product page (Results). For
any given page, the breadcrumbs for the previous steps are active hyperlinks, the breadcrumb for the
current page is highlighted text, and the breadcrumbs for the next steps are grayed-out text.

The breadcrumbs allow users to return to a previous step in the workflow to change a selection such as
Data Set or Geography. When a step invoked using a breadcrumb previously had a Next button (to
continue processing through the workflow steps), a Show Result ► button is displayed instead, which
when clicked, skips the intervening steps to display the results page reflecting the user’s modified
selections. This behavior is shown in steps 6 and 7 in Figure 35 below.

Main Data Sets
With Product Geography Population

Groups Results
Next NextAll

Data
Sets

Tables
Next

Via Breadcrumb

Show ResultsSelect Data Set

1
2 3 4 5

7

6

Figure - Breadcrumbs Quick Return Example
Version - 1.0 Date - 2004-11-09

Next

Figure 35: Example of breadcrumb "quick return" processing for Detailed Tables

However, if the step invoked by the breadcrumb is dependent upon the selections made in a proceeding
step (such as Population Groups and Tables respectively), the special “quick return” functionality (i.e.
Show Result ► button) is unavailable.

Date Last Printed: 9/26/06 Page 63 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

When a data-dependent step is not available or supported, such as Population Groups in the Census
2000 SF-1 data set, the corresponding workflow step is not available and the corresponding breadcrumb
is not shown.

 For content and functional details, see the Breadcrumbs functional specification (NAV_3).

4.4.9.6.5. Scroll Actions
Scroll Actions are used to navigate between result pages when the result spans more than one web
page. This sometimes happens for performance reasons; AFF limits the size of result pages. Result
pages can have table / column / row scrolling via hyperlinks; this scrolling is separate from the standard
user agent horizontal and vertical page scrolling using the scroll bars. Figure 36 below shows how scroll
actions appear on a result page with many geographies and tables.

Figure 36: Screen capture of Scroll Actions on a Detailed Tables Result(s) page

4.4.9.6.6. Map Actions
Map Actions allow the user to click on a point within the map to:

• Recenter on the point.

• Recenter and zoom in on the point.

• Identify (display) the geography name and data value for the geography containing the point
(Thematic Maps only).

Or to click on a map page element to:

• Change the display shading by geographic summary level on a Thematic Map.

• Zoom in or zoom out.

• Reposition by panning north, east, west or south.

• Reposition by address (Street + City + State, Street + ZIP, or just ZIP).

• Reposition by latitude and longitude.

• Change the presentation

Date Last Printed: 9/26/06 Page 64 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

These methods are not available from maps generated by the Map It button.

 For content and functional details, see the Reference Map Result (RM_1) and the Thematic Map
Result (TM_1) functional specifications.

The presentation changes available using map page elements include:

• Data Classes – Modify the data classes (classes/color scheme) used on Thematic Maps.

• Boundaries – Modify which survey boundaries to display on Thematic Maps and Reference Maps.

• Features – Modify which features to display on Thematic Maps and Reference Maps.

• Title – Set the map title on Thematic Maps and Reference Maps.

 For content and functional details, see the Map Manipulation Options functional specification
(MAP_2).

4.4.9.6.7. Menu Actions
Menu Actions are drop-down menus across the top of a results page that allow the user to modify or
extract the current result. Selecting a menu entry usually creates a pop-up dialog window in which the
user makes selections and then confirms the action.

Figure 37 below shows how menu actions appear on a result page; in this figure, the Current Selections
menu entry is selected from the Options drop-down menu.

Figure 37: Screen capture of Menu Actions with Options menu entry Current Selections selected

The menu actions appear under the drop-down menu headings shown below in Table 9.

Heading Description

Options Modify the format and/or contents of the result.

Filter Rows Modify the data shown by adjusting data filters.

Print / Download Extract the contents of the result.

Related Items Search for other results related to the current result.

Table 9: Menu Actions menu headings

4.4.9.6.7.1. Options
The Options menu entries modify the format and/or contents of the result; not all menu entries are
supported by all subsystem. The Options menu entries are described below in Table 10.

Menu Entry Description

Show/Hide
Geographic
Identifiers

Show or hide geographic identifiers for the geographies shown in a DT result;
these identifiers include Census geography identifiers, FIPS codes, land/water
areas, and basic demographic counts.

Geo Components Show or hide the geographic components in DT, QT, and CT results.

 For content and functional details, see the Geographic Component
Selection functional specification (GS_3)

Date Last Printed: 9/26/06 Page 65 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Menu Entry Description

Current Selections Displays the selections (such as geographies and tables) used to create the
current result.

 For content and functional details, see the Current Selections functional
specification (CS_1).

Select Columns Select which columns to display on an IBQ result.

Order Columns Rearrange the column order on a CT or IBQ result.

Create Columns Create a new column based on the value of another column on an IBQ result.

Sort Rows Sort the rows on a CT or IBQ result.

Table 10: Options menu entries

 For content and functional details on the Options IBQ menu entries (for Economic Survey results),
including Select Columns, Order Columns, Create Columns, and Sort Rows, see the Econ Result
Manipulation Options (EC_4) functional specification.

4.4.9.6.7.2. Filter Rows
The Filter Rows menu entries, found only in the IBQ subsystem, modify and filter the data shown in the
result; these menu entries work in a manner analogous to breadcrumbs. The Filter Rows menu entries
are described below in Table 11.

Menu Entry Description

by Geography Modify the geographies reported in the result.

by Industry /
by Product

Modify the industries/products reported in the result.

by Other Dimension Filter by other dimensions available in the data.

by Data Value Filter by a data value or range of data values for a column.

Reset Filters Clears all filters.

Current Selections Displays current selections and filters (Same functionality as Current
Selections) under the Options menu in other subsystems.

Table 11: Filter Rows menu entries

 For content and functional details on the Filter Rows menu entries, see the Econ Result Filter Rows
Option (EC_3) functional specification.

4.4.9.6.7.3. Print / Download
The Print / Download menu entries allow the user to extract or save the current result. The Filter Rows
menu entries are described below in Table 12.

Menu Entry Description

Print Print current results.

Download Download current results.

Load Query Load and execute a query stored by a previous Save Query.

Save Query Store the query for the current result on the user’s workstation as a XML file.

Date Last Printed: 9/26/06 Page 66 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Table 12: Print / Download menu entries

 For content and functional details, see the Download (DLND_1) and the Save & Load Query (SLQ_1)
functional specifications.

4.4.9.6.7.4. Related Items
Most results have a show Related Items menu entry that display a list of related results as hyperlinks.

 For content and functional details, see the Related Items functional specification (RI_1).

Date Last Printed: 9/26/06 Page 67 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.10. Congressional Web Site User Interface
The Congressional Web Site (CWS) user interface is a wrapper application around AFF, targeted to
Congressional staffers; this functionality is only available in English. This user interface is also known as
Fast Facts for Congress.

Figure 38: Congressional Web Site (CWS) user interface screen capture

The URL for this user interface is:
http://fastfacts.census.gov

Date Last Printed: 9/26/06 Page 68 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

In concept, CWS is similar SAFF; however CWS uses a different geography selection method and the
product results available are specified by CAO-defined requirements. The CWS functional view is shown
in Figure 39 below.

CWS
Main
Page

Fact Sheet

Foreign Trade

Reference Shelf

AIAN

People

Housing

Business & Industry

Governments

BOC

AFF

BOC

BOC

BOC

BOC

BOC

BOC

BOC

AFF

AFF

Change Geography

AFF

Topic PagesTopic PagesCWS Topic Pages
BOC

AFF

Figure - Congressional Web Site Functional View
Version - 1.0 Date - 2004-12-23

AFF

AFF

Figure 39: Congressional Web Site (CWS) user interface functional view

The CWS Main Page is the main entry point into CWS and contains hyperlinks to AFF and BOC pages.

The AFF hyperlinks are quick access paths to demographic and economic links for a limited set of
geographies: United States, States, Congressional Districts, and Counties. Users select one of the
supported geographies using one of two geographic selection methods, either:

• Geography drop-down lists (state, district and county), or

• Search by address (street address and ZIP code)

The left navigation bar menu options change the content well contents based upon the currently selected
geography. In addition, the left navigation bar also provides hyperlinks to commonly used references,
including: Census Subjects A-Z, The Latest News Releases, The Statistical Abstract of the United States,
and the AIAN user interface.

In the content well, breadcrumbs show the currently selected geography and its enclosing geographies;
users can switch to an enclosing geography by clicking on its breadcrumb entry.

 For content and functional details, see the Congressional Main Page functional specification (MP_2)

The functional descriptions for the major CWS UI web pages are briefly described below in Table 13.

Date Last Printed: 9/26/06 Page 69 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

CWS Page Page Contents

Fact Sheet Values and hyperlinks for demographic, social, economic, and housing
characteristics for the user-selected geography, organized by characteristic type.
The hyperlinks link to thematic maps and briefings. Unlike AFF, this is always the
result page after the user selects a new geography.

People Hyperlinks to tables, maps, and BOC documents and web pages of population
counts for the user-selected geography, organized by topic.

Housing Hyperlinks to tables, maps, and BOC documents and web pages of housing counts
for the user-selected geography, organized by topic.

Business &
Industry

Hyperlinks to BOC documents and web pages about business and industry for the
user-selected geography, organized by topic.

Foreign Trade Hyperlinks to BOC documents and web pages about foreign trade for the user-
selected geography, organized by topic.

Governments Hyperlinks to BOC documents and web pages about government for the user-
selected geography, organized by topic.

Reference Shelf Hyperlinks to other AFF and BOC web pages containing reference information.

CWS Topic Pages Each topic page explains a topic about information available within the CWS
interface. The number and content of CWS Topic Pages changes over time as
programs and program data are added, updated, and removed from CWS.

Table 13: CWS pages

The content of the CWS Main Page is updated on a regular basis with information of interest to Congress,
including:

• Announcements of breaking BOC news

• Hyperlinks to the latest BOC data releases

• Highlights the data available via CWS

• The current United States population clock

• A hyperlink to the Census Bureau Director’s page

The page shares the message-of-the-day function from the AFF Main Page used to alert users to
scheduled downtimes.

Date Last Printed: 9/26/06 Page 70 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.11. American Indian and Alaska Native (AIAN) Data and Links User Interface
The American Indian and Alaska Native (AIAN) Data and Links user interface is a wrapper application
around AFF, targeted to users needing information about American Indians and Alaska Natives; this
functionality is only available in English. This user interface is also known the Tribal Main Page.

Figure 40: American Indian and Alaska Native (AIAN) Data and Link user interface screen capture

The URL for this user interface is:
http://factfinder.census.gov/home/aian

The AIAN functional view is shown below in Figure 41.

AIAN
Main
Page

BOC

Other

AFF

Figure - AIAN Functional View
Version - 1.0 Date - 2004-11-09

Figure 41: American Indian and Alaska Native (AIAN) Data and Link user interface functional view

The AIAN Main Page is a collection of hyperlinks to AIAN data found in AFF and on other BOC web
sites.

 For content and functional details, see the Tribal Main Page functional specification (MP_3)

Date Last Printed: 9/26/06 Page 71 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.12. Kid’s Corner User Interface
The Kid’s Corner user interface is an educational stand-alone application targeted at children visiting the
AFF web site; this functionality is available only in English.

Figure 42: Kid’s Corner user interface screen capture

The URL for this user interface is:
http://factfinder.census.gov/home/en/kids/kids.html

The Kid’s Corner functional view is shown below in Figure 43.

Date Last Printed: 9/26/06 Page 72 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Kid's
Corner
Main
Page

Fun State Factsfacts
link

click on
a state State Fun Facts

quiz
link Quiz Pick Your Prizefinished

quiz

about
link About the Site!

What is a Census?

Next / Previous Page

Privacy Statement

why
link

privacy
link

Pick PrizeNext Question

census.gov

AFF Main Page

Figure - Kid's Corner Functional View
Version - 1.0 Date - 2004-11-09

Figure 43: Kid's Corner (KC) user interface functional view

The Kid’s Corner user interface provides:

• Fun state facts on a state-by-state basis

• An interactive quiz with “prizes”

• Information about the Kid’s Corner site

• Information about what is a Census

• A privacy statement

In addition, this user interface provides links to:

• AFF Main Page

• BOC Internet Home Page

Date Last Printed: 9/26/06 Page 73 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.13. Basic Facts User Interface
The Basic Facts (BF) user interface was a wrapper application around AFF, targeted at the causal user,
and was the historic entry point into AFF until AFF Release 9.2.1; this UI was removed in AFF Release
10. This UI was also known as Classic AFF and is known to be bookmarked by many users.

The URL for this user interface was:

http://factfinder.census.gov/servlet/BasicFactsServlet?_lang=en&_classic=

The Basic Facts functional view is shown below in Figure 44.

Basic
Facts
Main
Page

Show me...

For Geography...

Data Sets Page

AFF Main Page Table Result Product

Map Result Product

Advanced Search

Kid's Corner
BOC

AFF

Census 2000 Puerto Ricoswitch to
 Spanish

AFF

AFF
Select result type...

Figure - Basic Facts Functional View
Version - 1.0 Date - 2004-11-09

Figure 44: Basic Facts (BF) user interface functional view

The Basic Facts Main Page was the entry point into Basic Facts and provided a quick access path to
many commonly used AFF tables and maps via drop-down lists. The user selected the type of result
(Tables or Maps), a topic such as Age or Income (Show me…), a geographic selection (For
geography...), and then clicked the Go button to generate the desired table or map using a deep-link
into Core AFF; the result page is a customized version of the standard AFF result page.

In addition, the Basic Facts Main Page provided links to:

• The current AFF Main Page

• Data Sets Page

• Census 2000 Puerto Rico (the Spanish language version of the Basic Facts user interface)

• Advanced Search

• Thematic Maps

• Reference Maps

• Other documents and web sites with reference material

In the past, many of the table and map result pages were pre-built using a crawler program. This
approach is no longer supported but the pre-built maps that exist are still used in the current
implementation. These pre-built result pages have a “Back to Basic Facts” button that does not exist in
the on-the-fly result pages; the “Back to Basic Facts” button is being phased out to avoid confusion when
other applications deep-link to these result pages.

Date Last Printed: 9/26/06 Page 74 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.14. Administration User Interface
The Administration user interface is used to perform basic administration tasks on AFF using a browser;
this functionality is only available in English. The two major Administration UIs are AFF Central and AFF
System Tools.

4.4.14.1. AFF Central
The AFF Central user interface contains hyperlinks to AFF environment control web pages and other
administrative subsystems, AFF instances, and on-line documentation and logs.

Figure 45: AFF Central user interface screen capture

The URL for AFF Central is available only inside the BOC firewall:
http://affcentral.dads.census.gov

Date Last Printed: 9/26/06 Page 75 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The AFF Central functional view is shown below in Figure 46.

About AFF

Reports

Feedback Viewers

AFF Central

Main Page

AFF API documentation (JavaDocs)

Administrative tools for environment

For each AFF environment

System-wide reporting

AFF Main Page

CWS Main Page

AIAN Main Page

Figure - AFF Central Functional View
Version - 1.1 Date - 2004-11-19

Other Environments

Figure 46: AFF Central user interface functional view

The components available from AFF Central are briefly described in Table 14 below.

Component Description

About AFF Hyperlink to a page that describes the AFF environment, provides access to the
AFF API documentation, and links to a collection of web-based Administrative
tools used to manage, monitor, and troubleshoot the selected AFF instance.

AFF Main Page Hyperlink to the AFF Main Page for the selected AFF instance.

CWS Main Page Hyperlink to the CWS Main Page for the selected AFF instance.

AIAN Main Page Hyperlink to the AIAN Main Page for the selected AFF instance.

Other Environments Hyperlinks to other DADS systems such as AQ and ACS Beyond 20/20.

Feedback Viewers Hyperlinks to a web-based viewer for the feedback messages received by AFF
from the comments and questions submitted by users using the Feedback
hyperlink on the Global Navigation Menu.

Reports Hyperlinks to other pages with WebTrend, ArcIMS, Availability, User Stats and
other reports on AFF usage and performance.

Table 14: AFF Central components

Date Last Printed: 9/26/06 Page 76 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.4.14.2. AFF System Tools
The AFF System Tools user interface contains hyperlinks to AFF system tool web pages that report real-
time AFF system status.

Figure 47: AFF System Tools user interface screen capture

The URL for AFF System Tools is:
http://factfinder.census.gov/affutl/affmenu

The AFF System Tools functional view is shown in Figure 48 below.

AFF Database Status Report

Database/Dataset Sizes List

AFF Feedback Messages

AFF Central

Main Page

System-wide reporting

Figure - AFF System Tools Functional View
Version - 1.0 Date - 2004-11-09

AFF Status

AFF Task-Uptime Messages

AFF Monitoring Messages

Database Backup History

AFF VSD-DB Report

Oracle Software Install

Figure 48: AFF System Tools functional view

Date Last Printed: 9/26/06 Page 77 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The components available from AFF System Tools are briefly described in Table 15 below.

Component Description

AFF Status Report of real time status and health of each WebSphere node and
Oracle databases associated with the production environment as
reported by the AFFmon Perl script.

AFF Database Status Report Report of database status including basic statistics and status, the
number of users logged in, and what each user is doing.

AFF Task-Uptime Messages Viewer of system messages including reboots, unscheduled problems,
and software release dates.

AFF Feedback Messages Viewer for feedback messages received by AFF from comments and
questions submitted by users using the Feedback hyperlink on the Global
Navigation Menu. Same function as available from AFF Central.

AFF Monitoring Messages Viewer for failed WebSphere transactions.

Database/Dataset Sizes List Reports of database sizes, one report per system.

AFF VSD-DB Report Reports of VSD information, including what’s available and what’s
allocated, one report per system.

Oracle Software Install Reports of Oracle software installations by node, one report per system.

Database Backup History The dates, types, and status of all database backups, by system.

Table 15: AFF System Tools components

4.4.15. Command Line (System Administration) User Interface
The Command Line user interface is used to perform basic system administration tasks on AFF using
the AIX shell command line; this functionality is only available in English. This user interface is also
known as the System Administration or SA user interface. The SA user interface is collection of
programs used to configure, start, monitor, and stop AFF; these programs are invoked from the AIX shell
command line by hand or by the AIX task scheduler.

Date Last Printed: 9/26/06 Page 78 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.5. Subsystem Workflows
This section describes the workflows associated with each result product subsystem.

4.5.1. Advanced Search (AdvSearch) Subsystem
The Advanced Search subsystem, also known as AdvSearch or just Search, allows a user to query
AFF for documents and web pages matching user-specified search criteria. AFF supports keyword and
geography searches, including geography searches by list, name, address, map and geo-within-geo. The
geography searches are known as the Advanced Geography Search or AGS.

Abbreviations:
GEO = Geography
GSL = Geographic Summary Level

BOC

AFF

Advanced Search (all tabs)

Enter Keywords

Figure - Advanced Search Subsystem
Version - 1.0 Date - 2004-12-23

Select Subject from List

Keyword Search Tab

Select a Year / Program from List

Enter Search Term (GEO)

Select State to Restrict Search to

Geography Search Tab

Select GSL from List

Geography List Search Tab

Geography Name Search Tab

Enter Search Term (GEO)

Geography Address Search Tab

Enter Street Address

Geography M ap Search Tab

OR

Select GSL

Select GEO to Restrict Search to

Select GEO on Map

Map Actions

Select a GEO
from List

Search
Results

Search for G
EO

s m
atching G

EO
 Search C

riteria

Search For R
esults

Figure 49: Advanced Search (AdvSearch) subsystem functional view

Date Last Printed: 9/26/06 Page 79 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Search results are hyperlinks to the matching BOC documents and web pages, including AFF tables,
maps, and help (metadata) entries.

The search results are grouped into sections by result product type (Reference Map, Thematic Map,
Quick Tables and Demographic Profiles, Geographic Comparison Tables, etc). The search results page
can be very long and can take a long time to complete; the search results are returned as found to the
user’s browser on a section by section basis to minimize the time the user spends looking at a blank
screen.

 See the Search (SEARCH_1) functional specification for details.

4.5.2. ACS Data Profile (ADP) Subsystem
ACS Data Profiles, also known as ADPs, display a pre-defined set of data elements for a single user-
selected geography. ADPs are a Quick Table (QT) variant.

other Result(s)
Narrative

Housing
Economic

Social

Select a
Program

Select a
Geography

Select a
Data Set

Demographic

Result(s) Left Navigation Bar

Menu Actions
Figure - ADP Subsystem
Version - 1.0 Date - 2004-11-09

Figure 50: ACS Data Profile (ADP) subsystem functional view

 For the ADP creation workflow, see the Data Profiles (Path_DP) and the MYP Result Page
Navigation (NAV_4) functional specifications.

The results page shows a table with one row for each data element and one column for each data value
(e.g. estimate, lower bound, and upper bound) associated with the data element.

Users can download the results using Menu Actions (see section 4.4.9.6.7 Menu Actions). The Menu
Actions’ Options Menu is not supported ADP result pages.

The ADP result pages have a left navigation bar with hyperlinks to all five pages associated with an ADP:

• General Demographic Characteristics (the entry page)

• Selected Social Characteristics

• Selected Economic Characteristics

• Selected Housing Characteristics

• Population and Housing Narrative Profile

In addition, the left navigation bar also links to other ACS products such as Multi-Year Profiles (MYPs).

 See the Multi-Year Profile Result Page Navigation (NAV_4) functional specification for the left
navigation bar details.

 See the Data Profile Result Page (DP_1) functional specification for the Result(s) page details.

Date Last Printed: 9/26/06 Page 80 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.5.3. Narrative Profile (NP) Subsystem
Narrative Profiles, also known as NPs, displays a web page with a narrative profile for a single user-
selected geography; this profile includes text and charts. NPs are considered a page in the ACS Data
Profiles (see section 4.4.13 ACS Data Profile (ADP) Subsystem).

other Result(s)
Narrative

Housing
Economic

Social

Select a
Program

Select a
Geography

Select a
Data Set

Demographic

Result(s) Left Navigation Bar

Menu Actions
Figure - NP Subsystem
Version - 1.0 Date - 2004-11-09

Figure 51: Narrative Profile (NP) subsystem functional view

 For NP creation workflow, see the Data Profiles (Path_DP) and the MYP Result Page Navigation
(NAV_4) functional specifications.

The results page shows a collection of paragraphs, organized by topic, containing data values taken from
the data tables. Charts of selected data values are included within the profile.

Users can download the results using Menu Actions (see section 4.4.9.6.7 Menu Actions). The left
navigation bar contains hyperlinks to the other ACS Data Profiles for the same selected geography.

 See the Narrative Profile Result functional specification (NP_1) for the Result(s) page details.

4.5.4. Custom Table (CT) Subsystem
Custom Tables, also known as CTs, display a user-defined set of data elements for one or more user-
selected geographies filtered by a set of user-defined filters on selected data elements.

Select a
Program

Select
Geographies

Select
Data

Elements

Select a
Population

Group
Result(s)

Menu Actions

Select a
Data Set

Add / Remove

Add / Remove

Select
Filters

Add / Remove Scroll Actions

Figure - CT Subsystem
Version - 1.0 Date - 2004-11-09

Figure 52: Custom Table (CT) subsystem functional view

 For the CT creation workflow, see the Custom Table Path (Path_CT) functional specification.

The results page shows a table with one row for each selected geography and selected geography by
geographic component and one column for each selected data element.

Users can modify and/or download the results using Menu Actions and, if the results span more than one
web page, move between result pages using Scroll Actions (see sections 4.4.9.6.5 Scroll Actions and
4.4.9.6.7 Menu Actions).

Date Last Printed: 9/26/06 Page 81 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 See the Custom Table Result (CT_3) and the Custom Table Result Manipulation Options (CT_4)
functional specifications for the Result(s) page details.

4.5.5. Detailed Table (DT) Subsystem
Detailed Tables, also known as DTs, Summary Tables, Base Tables, and matrix tables, display a pre-
defined set of data elements for one or more user-selected geographies.

Select a
Program

Select
Geographies

Select
Tables

Select
Population

Groups
Result(s)

Menu Actions

Select a
Data Set

Add / Remove

Add / Remove

Add / Remove Scroll Actions

Figure - DT Subsystem
Version - 1.0 Date - 2004-11-09

Figure 53: Detailed Table (DT) subsystem functional view

 For the DT creation workflow, see the Detailed Table Path (Path_DT) functional specification.

The results page shows one table for each selected table and population group combination. Tables are
shown in table number order.

Users can modify and/or download the results using Menu Actions and, if the results span more than one
web page, move between result pages using Scroll Actions (see sections 4.4.9.6.5 Scroll Actions and
4.4.9.6.7 Menu Actions).

The format of a table varies by program and table, but the general format is, within each table, one row
for each data element (year or measure) in the table and one or more columns for the user-selected
geographies.

 See Detailed Table Result (DT_1) functional specification for the Result(s) page details.

4.5.6. Geographic Comparison Table (GCT) Subsystem
Geographic Comparison Tables, also known as GCTs, display a pre-defined collection of data
elements for a range of child geographies within a parent geographic area. GCTs are virtual tables, or
derived products, because the data values are based upon values from one or more matrix tables.

Select a
Program

Select a
Geography

Select a
Table

Select a
Population

Group
Result(s)

Menu Actions

Select a
Data Set

Select a
Table Format

Figure - GCT Subsystem
Version - 1.1 Date - 2004-12-23

Figure 54: Geographic Comparison Table (GCT) subsystem functional view

 For the GCT creation workflow, see the Geographic Comparison Table Path (Path_GCT) functional
specification.

The results page shows one table with one row for the parent geographic area and for each child
geographic area and one column for each data element (a value or a percentage). For GCTs that display

Date Last Printed: 9/26/06 Page 82 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

a rank, an additional leading column is the numeric rank of the child geography within the parent
geography and the table is displayed in ranked order. Otherwise, the table is displayed in a “natural” order
defined in the metadata; the order is usually alphabetical by child geography name.

Users can modify and/or download the results using Menu Actions (see section 4.4.9.6.7 Menu Actions).

 See the Geographic Comparison Table Result (GCT_1) functional specification for the Result(s) page
details.

4.5.7. Geography Quick Reports (GQR) Subsystem
Geographic Quick Reports, also known as GQRs, display a pre-defined collection of data elements for
a user-selected geography.

2- to 6-digit NAICS
2- to 4-digit NAICS

2- to 3-digit NAICS

Select a
Program

Select a
Data Set

Select Quick
Report

Select a
Geography

2-digit NAICS

Result(s)

Select Table Format

Menu Actions

Figure - GQR Subsystem
Version - 1.0 Date - 2004-11-09

Figure 55: Geography Quick Report (GQR) subsystem functional view

 For the GQR creation workflow, see the Geography Quick Report Path (Path_GQR) functional
specification.

The results page shows a table with columns for:

• NAICS code

• Industry description

• Number of establishments

• Number of employees

• Annual payroll ($1,000)

• Sales, shipments, receipts, or revenue ($1,000)

The table has one row for each NAICS code for data available within the selected geography.

The table is displayed in one of the user-selectable table formats:

• Economic Sector (2-digit NAICS code level)

• Economic Sector and Sub-Sector (2- and 3-digit NAICS code levels)

• Economic Sector, Sub-Sector, and Industry Group (2-, 3-, and 4-digit NAICS code levels)

• Economic Sector, Sub-Sector, Industry Group, NAICS Industry, and US Industry (2-, 3-, 4-, 5- and 6-
digit NAICS code levels)

Users can move between pages using the Select Table Format drop-down list and modify the results
using Menu Actions (see section 4.4.9.6.7 Menu Actions).

 See the Geography Quick Report Result (QR_1) functional specification for the Result(s) page
details.

Date Last Printed: 9/26/06 Page 83 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.5.8. Geographic Ranking Table (GRT) Subsystem
Geographic Ranking Tables, also known as GRTs, display a user-selected data element for a range of
geographies at the same geographic summary level (States, Counties and Places).

Menu Actions

Place
County

Select a
Program

Select a
Ranking Table

Select a
Data Set

State

Result(s)
Left Navigation Bar

Figure - GRT Subsystem
Version - 1.0 Date - 2004-11-09

Figure 56: Geographic Ranking Table (GRT) subsystem functional view

 For the GRT creation workflow, see the Ranking Table Path (Path_RT) functional specification.

The left navigation bar contains hyperlinks that enable users to view the results with and without statistical
significance, to switch between the different geographic summary levels, and to switch the survey year.

 See RT Result Page Navigation functional specification (NAV_5) for the navigation between GRT
Result(s) pages.

Users can download the results using Menu Actions (see section 4.4.9.6.7 Menu Actions).

 See the Ranking Table Result (RT_1) functional specification for the Result(s) page details.

 See the Confidence Interval Chart (CHART_1) functional specification for the products related to the
Ranking Table.

4.5.9. Industry Build Query (IBQ) Subsystem
Industry Build Query, also known as IBQs or Detailed Economic Statistics, displays economic data
elements across multiple dimensions, including geography, industry, product, data item, and other
dimensions.

Select a
Program Result(s)

Menu Actions

Select a
Data Set

Select an Economic
Data Set

Filter by
Geography

Filter by Industry
or Product

Filter by Other
Dimension

Filter by
Data Item

Scroll Actions

Figure - IBQ Subsystem
Version - 1.0 Date - 2004-11-09

Figure 57: Industry Build Query (IBQ) subsystem functional view

Date Last Printed: 9/26/06 Page 84 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Users can select economic data sets by sector or by keyword and can filter the results by geographic
area, industry or product, other dimensions, and by data item. A separate user session context, separate
from the IBQ session context, is used for the Select and Economic Data Set function; this is the
functionality shown within the dashed boxed in Figure 57 above.

 For the IBQ creation workflow and the Select and Economic Data Set step in particular, see the
ECON Data Set Find (EC_1) and Detailed Economic Statistics Path (Path_DES) functional
specifications.

The results page shows a table with code and measure columns that depend upon the Economic Data
Set, but can include:

• Type of geography flag (value and/or meaning)

• FIPS state code

• Geographic area name

• Economic program identifier (value and/or meaning)

• Units of measure

• NAICS (2-digit) economic sector (value and/or meaning)

• Product and services code (value and/or meaning)

• 2002 NAICS code (value and/or meaning)

• Type of operation or tax status code (value and/or meaning)

• Broad line indicator (value and/or meaning)

• Footnote identifier

• Year (value and/or meaning)

• Companies (measure)

• Number of Establishments (measure)

• Value of sales, shipments, receipts, revenue or business done ($1,000) (measure)

• Product shipments quantity (measure)

• Product shipments value ($1,000) (measure)

The table has one row for each combination of selected dimension values for which data is available.

Using the Options menu, users can change which columns are displayed, and whether to display the
value, meaning, or both the value and meaning of columns containing codes.

 For the Options menu entries unique to Industry Build Query Result(s), see the ECON Result
Manipulation Options (EC_4) functional specification.

Using the Filter menu, users can change the result set by setting filters on dimension values.

 For the Filter menu entries unique to Industry Build Query Result(s), see the ECON Result Filter
Rows Option (EC_3) functional specification.

Users can also modify the results using other standard Menu Actions (see section 4.4.9.6.7 Menu
Actions).

 See the Detailed Economic Statistics Result (EC_2) functional specification for the Result(s) page
details.

Date Last Printed: 9/26/06 Page 85 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.5.10. Industry Quick Reports (IQR) Subsystem
Industry Quick Reports, also known as IQRs, display a pre-defined collection of data elements for a
user-selected industry across the United States and the individual states for which data is available.

Select a
Program

Select
Industry Result(s)

Menu Actions

Select a
Data Set

Select Quick
Report

Figure - IQR Subsystem
Version - 1.0 Date - 2004-11-09

Figure 58: Industry Quick Report (IQR) subsystem functional view

 For the IQR creation workflow, see the Industry Quick Report Path (Path_IQR) functional
specification.

The results page shows a table with columns for:

• Geography

• Number of establishments

• Number of employees

• Annual payroll ($1,000)

• Sales, shipments, receipts, or revenue ($1,000)

• 2002 population estimate

The table has one row for each geographic area (United States and states) for which data is available.

Users can modify and/or download the results using Menu Actions (see section 4.4.9.6.7 Menu Actions).

 See the Industry Quick Report Result (QR_2) functional specification for the Result(s) page details.

4.5.11. Multi-Year Profile (MYP) Subsystem
Multi-Year Profiles, also known as MYPs, Change Profiles, or Comparison Profiles, display a pre-
defined set of data elements for multiple survey years for a single user-selected geography. MYPs are a
Quick Table variant.

other Result(s)
Housing

Economic
Social

Select a
Program

Select a
Geography

Select a
Data Set

Demographic

Result(s) Left Navigation Bar

Menu Actions

Figure - MYP Subsystem
Version - 1.0 Date - 2004-11-09

Figure 59: Multi-Year Profile (MYP) subsystem functional view

Date Last Printed: 9/26/06 Page 86 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 For the MYP creation workflow, see the Multi-Year Profile Path (Path_MYP) functional specification.

The results page shows a table with one row for each data element and one column for each data value
(e.g. year, distribution, year difference, margin of errors, statistical significance, etc) associated with the
data element.

 See the Multi-Year Profile Result (MYP_1) functional specification for the Result(s) page details.

Users can download the results using Menu Actions (see section 4.4.9.6.7 Menu Actions).

The MYP result pages have a left navigation bar with hyperlinks to all four pages associated with a MYP:

• General Demographic Characteristics (the entry page)

• Selected Social Characteristics

• Selected Economic Characteristics

• Selected Housing Characteristics

In addition, the left navigation bar also links to other MYPs and the ADP for the same geography.

 See the MYP Result Page Navigation (NAV_4) functional specification for navigation details.

4.5.12. Quick Table (QT) Subsystem
Quick Tables, also known as QTs, display a pre-defined collection of data elements for one or more
user-selected geographies. QTs are considered virtual tables, or derived products, because the data
elements and data values in QTs are taken from one or more Detailed Tables.

Select a
Program

Select
Geographies

Select
Tables

Select
Population

Groups
Result(s)

Menu Actions

Select a
Data Set

Scroll ActionsAdd / Remove

Figure - QT Subsystem
Version - 1.1 Date - 2005-06-14

Figure 60: Quick Table (QT) subsystem functional view

 For the QT creation workflow, see the Quick Table Path (Path_QT) functional specification.

The results page shows one table for each selected geography and population group and geography
component combination. Tables are shown in table number order.

Users can modify and/or download the results using Menu Actions and, if the results span more than one
web page, move between result pages using Scroll Actions (see sections 4.4.9.6.5 Scroll Actions and
4.4.9.6.7 Menu Actions).

Within each table, there is one row for each data element and:

• For the DEC program, usually columns for a value and a corresponding percentage.

• For the ACS program, three estimated value columns (direct, lower bound, upper bound).

 See the Quick Table Result (QT_1) functional specification for the Result(s) page details.

Date Last Printed: 9/26/06 Page 87 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.5.13. Interated Profiles (IP) Subsystem
Iterated Profiles, also known as IPs, are variants of QTs. Iterated Profiles are also known as Selected
Population Profiles and as Profiles of Selected Population Groups. In general, IPs differ from QTs in
that:

• Table selection is predetermined by AFF and cannot be changed by the user.

• Only one population group can be selected per result page (single select for population group).

Select a
Program

Select
Geographies

Select a
Population

Group
Result(s)

Menu Actions

Select a
Data Set

Scroll Actions

Figure - IP Subsystem
Version - 1.1 Date - 2005-06-14

Figure 61: Interated Profiles (IP) subsystem functional view

 See the Interated Profile (IP_1) Functional Specification, Layout Specification, and Product Summary
functional specification for details.

4.5.14. Subject Tables (ST) Subsystem
Subject Tables, also known as STs, are variants of QTs. In general, STs differ from QTs in that:

• Only one geographic area can be selected per result page (single select for geography).

• Only one table can be selected per result page (single select for tables)

Select a
Program

Select a
Geography

Select a
Table Result(s)

Menu Actions

Select a
Data Set

Figure - ST Subsystem
Version - 1.1 Date - 2005-06-14

Figure 62: Subject Tables (ST) subsystem functional view

 See the Subject Table (ST_1) Functional Specification, Layout Specification, and Product Summary
functional specification for details.

4.5.15. Product (Industry) Quick Reports (PIQR) Subsystem
Product (Industry) Quick Reports, also known as PIQRs, display a pre-defined collection of data
elements for a user-selected product line code(s) across the United States and the individual states for
which data is available. A PIQR is a variant of a IQR.

Date Last Printed: 9/26/06 Page 88 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Select a
Program Result(s)

Menu Actions

Select a
Data Set

Select Table Format

Select Quick
Report

Select Product
by Industry

Figure - PIQR Subsystem
Version - 1.0 Date - 2004-11-09

Figure 63: Product Industry Quick Report (PIQR) subsystem functional view

 For the PIQR creation workflow, see the Product Quick Report Path (Path_PQR) functional
specification.

The results page shows a table with columns for:

• Product line code

• Description

• Number of establishments

• Sales, receipts or revenue ($1,000)

The table has one row for each product line code and geography combination for the data available within
the selected industry (NAICS code).

The table is displayed in one of the user-selectable table formats using a drop-down list:

• Product statistics for all product codes within the industry for the United States

• Product statistics for all product codes within the industry for the United States and by state

Users can modify and/or download the results using Menu Actions (see section 4.4.9.6.7 Menu Actions).

 Se the Product Quick Report Result (QR_3) functional specification for the Result(s) page details.

4.5.16. Product Quick Reports (PQR) Subsystem
Product Quick Reports, also known as PQRs, display a pre-defined collection of data elements for a
user-selected NAICS code(s) across the United States and the individual states for which data is
available.

Select a
Program Result(s)

Menu Actions

Select a
Data Set

Select Table Format

Select Quick
Report

Select Product
by Product Line

Figure - PQR Subsystem
Version - 1.0 Date - 2004-11-09

Figure 64: Product Quick Report (PQR) Functionality

Date Last Printed: 9/26/06 Page 89 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 For the PQR creation workflow, see the Product Quick Report Path (Path_PQR) functional
specification.

The results page shows a table with columns for:

• NAICS code

• Industry description

• Geography

• Number of establishments

• Sales, receipts or revenue ($1,000)

The table has one row for each NAICS code and geography combination for data available within the
selected sector (2-digit NAICS code) and selected product line.

The table is displayed in one of the user-selectable table formats using a drop-down list:

• Product statistics for all industries with the product for the United States

• Product statistics for all industries with the product for the United States and by state

Users can modify and/or download the results using Menu Actions (see section 4.4.9.6.7 Menu Actions).

 See the Product Quick Report Result (QR_3) functional specification for the Result(s) page details.

4.5.17. Thematic Map (TM) Subsystem
Thematic Maps, also known as TMs and Cloropeth Maps, display a shaded map that represents a set
of data element values for the child geographies within a parent geographic area. The geography areas
are always Census survey boundaries. TMs are, conceptually, a geographic representation of
Geographic Comparison Table. GCTs are not TMs, however, as the BOC carefully selects data elements
and geography combinations, known as themes, to ensure accurate data presentations. A theme
specifies the data element, the parent geographic area, and the geographic summary level (e.g.
Population for the United States by County) for a TM.

Select a
Program

Result(s)

Menu Actions

Select a
Data Set

Map Actions

Select a
Geography

Select a
Theme

Change By
Geography Type

Figure - TM Subsystem
Version - 1.1 Date - 2004-12-23

Figure 65: Thematic Map (TM) subsystem functional view

 For the TM creation workflow, see the Thematic Map Path (Path_TM) functional specification.

The results page shows a thematic map for the selected data set, theme and geography.

Users can modify and/or download the map result using Map Actions and Menu Actions (see sections
4.4.9.6.6 Map Actions and 4.4.9.6.7 Menu Actions).

Uses can change the “by geography type” using a drop-down list on the Result(s) page.

 See the Thematic Map Result (TM_1) functional specification for the Result(s) page details.

Date Last Printed: 9/26/06 Page 90 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.5.18. Reference Map (RM) Subsystem
Reference Maps, also known as RMs, display a map used to identify geographic area and to explore
relationships between geographic areas – only survey boundaries and orienting features are available in
RMs.

Select a
Program Result(s)

Menu Actions

Map Actions

Figure - RM Subsystem
Version - 1.0 Date - 2004-11-09

Figure 66: Reference Map (RM) subsystem functional view

 For the RM creation workflow, see the Reference Map Path (Path_RM) functional specification.

The results page shows a reference map for the selected geography.

Users can modify and/or download the reference map result using Map Actions and Menu Actions (see
sections 4.4.9.6.6 Map Actions and 4.4.9.6.7 Menu Actions).

 See the Reference Map Result (RM_1) functional specification for the Result(s) page details.

4.5.19. Help / Metadata Browser (HELP) Subsystem
The Help / Metadata Browser subsystem is a help and information system displayed in a pop-up
browser window and invoked by the Help and Glossary global navigation menu hyperlinks and by
metadata browser links; the content and function vary by the user interface associated with the invoking
web page.

The four functions available in the Help subsystem are: (1) step help (context-sensitive user guidance),
(2) information about census programs, products, and data, (3) a glossary of census terms, and (4) user
tutorials on using AFF. Hyperlink menus on subsystem pages allow users to switch between functions.

Tutorials

Glossary

Census Data InformationUser
Interface

Click on the Help hyperlink Step Help

Metadata Browser (Help)
Subsystem

Internal
HyperinksClick on the Glossary hyperlink

Click a metadata hyperlink

Figure - Help Subsystem
Version - 1.0 Date - 2004-11-09

Figure 67: Metadata Browser (Help) subsystem functional view

Date Last Printed: 9/26/06 Page 91 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.5.19.1. Step Help
The Step Help, also known as content-sensitive help, provides instructions for the workflow step
associated with the invoking user interface and web page.

The collection of step help pages is also known as EPSS content after the content management system
that maintains the content. AFF pages contain hyperlinks to specific entries (functions/steps) within the
Step Help.

 See the Help (HELP_1) functional specification for details.

4.5.19.2. Census Data Information
The Census Data Information provides access to the Census metadata and descriptions for programs,
surveys, data sets, tables, maps, individual data elements, and selected data values; this function is also
known as the Metadata Browser. AFF pages contain hyperlinks to specific entries (metadata) within the
Census Data Information.

 See the Metadata Browser (HELP_3) functional specification for details.

4.5.19.3. Glossary
The Glossary contains census terms and the official BOC definitions of these terms. AFF pages contain
hyperlinks to specific entries (terms) within the Glossary.

 See the Glossary (HELP_2) functional specification for details.

4.5.19.4. Tutorials
The Tutorials are a collection of on-line AFF demonstrations including a site tour and instructions for
working with search, tables, maps, and economic data.

 See the Tutorials (HELP_4) functional specification for details.

4.5.20. Public Use Microdata Sample (PUMS) Subsystem
Public Use Microdata Sample, also known as PUMS, is sample data available for download from AFF to
a user’s local computer.

Select a
Program Result(s)Select a

Data Set

data download
to user's system

Figure - PUMS Subsytem
Version - 1.0 Date - 2004-11-09

Select
PUMS File

Figure 68: Public Use Microdata Sample (PUMS) subsystem functional view

 For the PUMS creation workflow, see the PUMS Path (Path_PUMS) functional specification.

The Result(s) page shows the download selections available to the user. The user makes their
selection(s) and then starts the download process.

 See the PUMS Download (DNLD_2) functional specification for details on the PUMS download page
and the download processing.

Date Last Printed: 9/26/06 Page 92 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.6. Common Workflow Steps
This section briefly describes the common workflow steps used by the workflow descriptions in the
preceding section.

4.6.1. Select Data Elements
The Select Data Elements function is the metadata-driven selection of one or more data elements from
the set of data elements available for the current program, survey, data set, and geography selections.
Data elements are selectable (1) from a list, (2) by subject, (3) by keyword, and (4) by search.

 See the Custom Table Data Element Selection (CT_1) functional specification for details.

4.6.2. Select a Data Set
The Select a Data Set function is the metadata-driven selection of a survey and a data set within the
survey for the current Census program selection. The results (subsystems) available for a data set are
shown after selection. See section 4.4.9.2 Data Set Selection for details.

4.6.3. Select Filter
The Select Filter function is the metadata-driven creation of one or more data elements filters from the
set of selected data elements. A filter is an expression comparing a data element’s value against an
explicit set of values, or range of value.

 See the Custom Table Filter Selection (CT_2) functional specification for details.

4.6.4. Select Geographies
The Select Geographies function is the metadata-driven selection of one or more geographies from the
set of geographies available for the currently selected program, survey, and data set. Geographies are
selectable (1) from a list, (2) by name search, (3) by address search, (4) from a map, and (5) by geo-
within-geo. See section 4.4.9.3 Geographic Selection(s) for details.

4.6.5. Select a Geography
The Select a Geography function is the single select version of the Select Geographies function; as a
result, geo-within-geo selection is not supported. See section 4.4.9.3 Geographic Selection(s) for details.

4.6.6. Select Industry
The Select Industry function is the metadata-driven selection of an industry from the set of industries
available for the current program and survey selections. Industries are selectable (1) from a list, and (2)
search by keyword.

 See the Industry Selection (IS_1) functional specification for details.

4.6.7. Select Population Groups
The Select Population Groups function is the metadata-driven selection of one or more population
group available for the current program, survey, data set, and table selections. Population groups vary by
data set and table, common population groups include (1) Race or Ethnic Group, (2) Ancestry Groups, (3)
Tribes Alone, and (4) Tribes Alone or in Any Combination. Population Groups are also known as
Characteristic Iterations (CI).

 See the Population Group Selection (PG_1) functional specification for details

Date Last Printed: 9/26/06 Page 93 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.6.8. Select a Population Group
The Select Population a Group function is the single select version of the Select Population Groups
function.

 See the Population Group Selection (PG_1) functional specification for details

4.6.9. Select a Program
The Select a Program function is the metadata-driven selection of a Census program. See section
4.4.9.1 Program Selection for details.

4.6.10. Select Quick Report
The Select Quick Report function is the metadata-driven selection of a quick report type for the current
program and data set selection; the user clicks the hyperlink for the quick report type to start the workflow
for the quick report type.

Select
Quick
Report

IQR
PQR

PIQR
GQR

Figure - Select Quick Report
Version - 1.0 Date - 2004-11-09

Figure 69: Select Quick Report Function functional view

The quick reports types are:

• Industry Quick Reports (IQR)

• Product Quick Reports (PQR)

• Product (Industry) Quick Reports (PIQR)

• Geographic Quick Reports (GQR)

 See the Quick Report Selection (QR_4) functional specification for details.

4.6.11. Select a Ranking Table
The Select a Ranking Table function is the metadata-driven selection of a ranking table and geographic
summary level combination from the set of tables and geographic summary levels available for the
current program and survey selections.

 See the Alternate Table Selection (TS_2) functional specification for details.

4.6.12. Select a Table Format
The Select a Table Format function is the metadata-driven selection of a table format for GCTs from a list
of available table formats for the currently selected program, survey, data set and geography.

 See the Geographic Selection (GS_1) functional specification for details.

Date Last Printed: 9/26/06 Page 94 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.6.13. Select a Theme
The Select a Theme function is the metadata-driven selection of a thematic map theme from the set of
themes available for the current program, survey, data set, and geography selections. The theme is
selectable (1) by subject, (2) by keyword, and (3) show all themes (by list). See section See section
4.4.9.4 Product Selection(s) for details.

 See the Theme (Map) Selection (MS_1) functional specification for details.

4.6.14. Select Tables
The Select Tables function is the metadata-driven selection of one or more tables from the set of all
tables available for the current program, survey, data set, and geography selections. Tables are
selectable (1) by subject, (2) by keyword, and (3) show all tables (by list). See section 4.4.9.4 Product
Selection(s) for details.

 See the Table Selection (TS_1) functional specification for details.

4.6.15. Select a Table
The Select a Table function is the single select version of the Select Tables function. See section 4.4.9.4
Product Selection(s) for details.

 See the Table Selection (TS_1) functional specification for details.

4.7. Other Functionality
This section describes other architecturally significant AFF functionality.

4.7.1. Bookmarking
The Bookmarking functionality allows users to save a bookmark for an AFF entry page or result page
using the page’s URL. Due to browser and infrastructure limitations, the ability of AFF to rebuild a result
page based upon the URL is inversely related to the complexity of the query associated with the original
result page.

Bookmarking uses the Deep-Linking functionality to build and display a page based upon a saved
bookmark.

 See the Bookmarking (BMARK_1) functional specification for details.

4.7.2. Deep-Linking
The Deep-Linking functionality is the ability of AFF to establish an AFF session and create an AFF result
page based upon the contents of a URL. This functionality supports both the ability to rebuild an AFF
result page based upon the URL created by the Bookmarking functionality and to allow programmatic
deep-links to AFF result pages. For example, CWS and SAFF user interfaces use Deep-Linking to create
AFF result pages based upon a user-selected geographic area.

 See the AFF Deep-Linking functional specification for details.

4.7.3. Save/Load Query
The Save/Load Query functionality allows users to save their current query as an XML file locally on their
workstation and then later load and re-execute their query in AFF. Unlike Bookmarking, the Save/Load
Query functionality saves the entire query, no matter how complex.

 See the Save and Load Query (SLQ_1) functional specification for details.

Date Last Printed: 9/26/06 Page 95 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

4.7.4. User Statistics
User Statistics, also known as User Activity Logging, tracks AFF usage patterns to help DADS
understand how users are using AFF. AFF logs the selection criteria used to generate table and map
result pages. Neither navigational pages nor the paths taken to result pages are logged. This subsystem
logs only the initial selection criteria used to create a result page; subsequent navigation actions, such as
scrolling (next/previous) between table pages and navigating (zoom/pan) on a map, are not logged.

The information logged includes user selections of: data set, characteristic iterations, geographies by
summary level, economic tables, survey types, tables selections, thematic map themes, etc.

The log records of user activity are stored in a user statistics database; queries are run against this
database regularly and the resulting reports are available via the AFF Central user interface.

 This infrastructure functionality (TRACK_1) does not have a functional specification.

4.8. Session Contexts
AFF “remembers” a user’s query selections within a subsystem for the duration of the user’s session;
these selections are stored within AFF using the session context. Users can switch between subsystems
at will; a change to one subsystem’s session context does not affect another subsystem’s session
context.

Architecturally, session contexts maintain state within AFF and allow AFF to handle large and complex
workflows without having to pass all query parameter with every request and response. For example, AFF
can handle up to several thousand geography selections on multiple tables.

To prevent build-up of session contexts within AFF, a user session times out after an hour of user
inactivity. When a user takes a long break and then attempts to continue using the AFF, AFF responds
with a session expired error.

A user can explicitly clear all session contexts using the Clear all selections function found on the Data
Sets Page.

 This infrastructure functionality (SESSION) does not have a functional specification.

Date Last Printed: 9/26/06 Page 96 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5. LOGICAL VIEW

5.1. System Context Diagram

Web User
Public, Census,

TOPAZ, Robots, etc.

Data Supplier
GEO

Data Provider
DADS, ACSO,
EPCD, POP

DADSO

Request for Info
Request for Assistance

Info via the Web

Usage Statistics
Availability Statistics

Non-Spatial & Spatial
Geographic Data

Validation File
Aggregated Data
Product Metadata

External Sys
Ferret,

RightNow

Special
Interest

CAO, REAC

Summary File Data
User Feedback

Customized
Views

Web Dissemination
System Monitoring
Feedback Collection
System Hosting

AFF

Validator
POP, HHES

Aggregated Data

Figure - AFF System Context
Version - 1.1 Date - 2005-07-18

Manages

Figure 70: System Context Diagram

As seen in Figure 70, the context within which AFF operates is extensive; several different user
communities, organizations, systems, or other entities interact with AFF. These entities assume different
roles, such as that of Web User or Data Provider. As AFF increases the services it provides to its BOC
customers, the AFF context grows. In the near future, External Systems (i.e., not managed by AFF) will
interact with AFF, increasing the capabilities that AFF needs to provide.

5.1.1. Entities Interacting with AFF
• Data Providers supply aggregated data and product metadata for AFF to disseminate. Data from

other censuses or surveys, such as the American Community Survey (ACSO), are already tabulated
into predefined products. AFF disseminates the data via the web and provides a validation file to the
Data Provider for their verification purposes. DADS is the largest data provider and provides the
aggregated data associated with the Decennial 2000 census.

• Data Suppliers are BOC organizations or external vendors that provide data required by AFF to
perform its functions. For example, the Geography Division (GEO) provides non-spatial and spatial
geographic data. Non-spatial geographic data are needed to process both microdata and aggregated
data while spatial geographic data are needed for mapping.

• Validators are BOC analysts or statisticians who review and validate the tabulated or disseminated
data before release to the public. The Population (POP) and Housing and Household Economic

Date Last Printed: 9/26/06 Page 97 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Statistics (HHES) divisions validate the data and derived products produced from the Decennial
Census and authorize their release to the public or Special Tabulation Customer.

• Web Users are the end-users of AFF dissemination systems. These users seek Census data via
predefined products delivered on the web. They also seek assistance by submitting feedback, which
is collected by AFF. There are many types of web users, including BOC employees, the public,
monitoring systems (TOPAZ), and web-based robots such as search engines (e.g. Google, Yahoo,
etc).

• Special Interest Groups seek to serve their constituency by providing a customized view of the
disseminated data. For the Congressional Affairs Office (CAO) and the Race and Ethnic Advisory
Committee (REAC), AFF has a separate user interface targeted to meet their needs.

• External Systems will have access to AFF data. Ferrett may use Decennial 2000 Census Summary
File 4 (SF4) hosted in the AFF environment. RightNow will obtain the DADS’ Web User feedback via
an email sent from AFF so MSO can respond to the user’s request for assistance.

• DADS uses information collected by AFF on web usage, data usage, and system availability to verify
system operations. AFF system administrators manage AFF deployments and the day-to-day
operations of the development, test and production environments.

5.2. Architectural Overview Diagram

HTML
Browser

IBM
WebSphere

IBM
HTTP
Server

Java
Servlets

Presentation Services Business
Services Data Services

JSPs

Internet

Scalable AIX Web
Servers

ArcIMS
Server

Scalable AIX Application
Servers

Scalable AIX
Database
Servers

Oracle

Data
Warehouse

Metadata
Repository

ArcSDE Server

Spatial

DB2

Session

LDAP
Server

IBM
Edge

Server

User Activity

Figure - AFF Logical Architecture Overview
Version - 1.1 Date - 2005-06-09

plug-
in

Figure 71: AFF Logical Architecture Overview

Date Last Printed: 9/26/06 Page 98 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Users create query requests interactively using an HTML Browser (or other user agent) via a series of
requests to AFF over the Internet. These requests are received by the IBM Edge Server and redirected to
an IBM HTTP Server that either directly satisfies static content requests, or forwards the request to IBM
WebSphere for processing dynamic content requests. Custom Java Servlets are executed within IBM
WebSphere to process the request and build the response using Java Server Pages (JSPs) technology.
The Java Servlets process the user request, and dynamically query the Oracle-based AFF Metadata
Repository to build queries against the tabulated data stored in the Oracle-based AFF Data Warehouse.

To improve performance and reduce network traffic, the Java Servlets store the user’s Session context in
the DB2-based persistent session database. For user requests involving geospatial data, such as maps
or street address searches, the Java Servlets send geospatial requests to the ESRI ArcIMS Server for
processing; the ArcIMS Server uses spatial data stored in a geodatabase database controlled by the
ArcSDE Server.

For the internal review system used by BOC Subject Matter Experts (SMEs), access is controlled using a
set of users and groups defined in an LDAP server.

5.2.1. IBM WebSphere Edge Server
The IBM WebSphere Edge Server includes a component known as Network Dispatcher (ND). ND
helps reduce Web server congestion, increase content availability, and provide improved Web server
performance through load balancing. ND provides automated routing of web requests to available web
servers for balancing or failure recovery.

Network Dispatcher is configured to return a user back to an HTTP/WebSphere Server node based on
their IP address. The benefits of returning a user to a node include the reuse of application cache, user
session and database resources already in memory to support that user.

IP address-based routing, or “sticky bit” usage, can be problematic because some Internet Service
Providers, like America Online, have many users share a fixed pool of IP addresses. Although this may
have a small performance impact on AFF (because the application caches are not used to their full
extent), it has no functional effect on AFF, because AFF tracks users by a unique session identifier, not
their IP address.

5.2.2. IBM HTTP Server
The IBM HTTP Server serves static HTML pages and images, and forwards dynamic page requests, via
a HTTP plug-in, to IBM WebSphere Application Server. The IBM HTTP Server also serves map images
generated on-demand by AFF’s mapping system.

All HTTP page requests, static or dynamic, are logged in the IBM HTTP Server web server logs.

IBM’s HTTP Server is based on the open source Apache web server.

5.2.3. HTTP Plug-In
The HTTP Plug-In routes requests for dynamic pages from the HTTP Server to a WebSphere Application
Server. The HTTP Plug-In also performs workload management and uses a weighted round robin
technique to distribute application server requests (that do not belong to an existing session) across web
containers running within an application server node.

After a session is created, all requests associated with the session are directed to the same application
server that created the session. For American FactFinder, this is accomplished via a session identifier
embedded in a HTTP request header. If the application server associated with a session is not available,
the HTTP Plug-In will direct requests to an available application server within the cluster. Any session
information for the user is recovered from the persistent session database, which allows application
servers within the same cluster to share session information.

Date Last Printed: 9/26/06 Page 99 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.2.4. WebSphere Application Server
The dynamic component of the American FactFinder application is a J2EE application built using IBM
WebSphere Application Server (WAS). WAS version 5.1 is an application server based on J2EE
version 1.3.

American FactFinder is a custom Java application that uses the J2EE infrastructure components Java
Servlets, JavaServer Pages, JDBC, and XML to build and deploy a robust and scalable enterprise web
application.

5.2.5. Application Server Clones
The production American FactFinder system is configured as a multi-node WebSphere cluster. A cluster
is a collection of identically configured nodes running the AFF application. A node is a physical machine.
Running multiple nodes provides AFF with horizontal scalability – performance can be enhanced, if
necessary, by adding more nodes to the cluster.

A given node can run multiple application servers. Each application server is called a clone. A clone is
a stand-alone Java Virtual Machine (JVM) that runs a complete, standalone instance of the AFF
application. Clones provide AFF with vertical scalability – the ability to fully utilize the available memory
and processing power on a single node.

All clones in the WebSphere cluster share a common session database, which provides session failover
in the event a clone or a node dies between user requests.

5.2.6. IBM LDAP Server
On the AFF Internal Review environment, AFF is password protected and available only to authorized
users. The extra security is required since the AFF Internal Review environment may contain data under
review by the data provider and not publicly released. Security is implemented with standard WebSphere
LDAP security and uses the IBM Directory Server to manage users and groups. The WebSphere
Administration Client is used to assign user and group privileges to specific servlets in the AFF
application.

WebSphere security is not used on the AFF production system.

5.2.7. ArcIMS
American FactFinder’s mapping subsystem is implemented with ESRI’s ArcIMS and ArcSDE COTS.
ArcIMS is an Internet map-publishing engine that provides on-demand thematic and reference map
services, and geocoding services to AFF.

Geocoding converts an address into an (x,y) coordinate or a Census Block ID. Geocoding supports the
“Search by Address” functionality in American FactFinder.

WebSphere and ArcIMS interact via the ArcXML language. WebSphere mapping requests, packaged as
ArcXML messages, are sent to ArcIMS using the ArcIMS connector. The ArcIMS connector is Java
library that allows WebSphere and ArcIMS to exchange ArcXML messages. A single map request may
require several ArcXML request/response interactions between WebSphere and ArcIMS.

ArcIMS manages a set of Spatial Servers that provide query, geocoding, and image services. The query
and image services use ArcSDE to resolve geospatial queries or retrieve features and boundaries. The
geocoder uses an address lookup file from a third-party provider.

The ArcXML map configuration files, called axl files, created with an XML Editor or the ArcIMS Author
software package, define map properties and rendering instructions. At startup, ArcIMS loads the axl
files to create image services in the spatial servers.

The image server builds maps as GIF files and stores them on a file system available to the IBM HTTP
Server. ArcIMS returns to WebSphere not the image, but rather a pointer to the image on disk. In turn,
AFF returns to the user an HTML page with a link to the map image.

Date Last Printed: 9/26/06 Page 100 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.2.8. ArcSDE
ArcSDE is middleware that provides database-independent geospatial functions on top of a relational
database called a geodatabase. AFF uses Oracle to store the ESRI geodatabase. Most interactions
with the geodatabase are done via the ArcSDE middleware, so the geodatabase is considered a
proprietary vendor database.

5.2.9. AFF Application Architecture
AFF uses a “Model 2” application architecture, the most widely used architecture for web-based
applications. Model 2 is also called the model-view-controller (MVC) architecture. MVC is a layered
architecture that cleanly separates areas of concern in the application:

• The model contains the business logic. The AFF model is implemented as several layers – the
service, factory, and builder layers work together to create AFF business objects.

• The view contains the presentation logic or user interface and is responsible for rendering model
objects into appropriate HTML and JavaScript. The AFF view is implemented using JavaServer
Pages.

• The controller contains the application navigation logic and coordinates between the model and
view. The AFF controller is implemented using servlets.

By decoupling the business and presentation logic into separate layers, namely the model and view, an
application is easier to maintain and enhance.

5.2.9.1. Design Patterns
Design patterns are proven reusable solutions to common problems. They are well documented in the
programming community and provide a common language for designers and architects to discuss
recurring problems and proven solutions.

The model-view-controller architecture is one of the best-known design patterns. AFF uses a number of
design patterns in its design, including thread and object pools, singletons, producer-consumer threads,
and object factories.

5.2.9.2. MVC Controller
In AFF, the MVC controllers are implemented as servlets and represent the public interface to AFF. The
controller coordinates the flow of information between the model and view. The controller has the
following responsibilities:

• Validate the user’s HTTP request and extract the user’s query parameters from the HTTP message.

• Update or create the session object with the user’s request.

• Parse the user’s request, and make one or more calls to the service layer to assemble the business
objects to respond to the user’s request.

• Bundle the business objects returned from the service layer into a view adapter object, and forward
the view adapter to the view for presentation.

• Log the details of the user’s request into a XML file for later loading in the User Activity database.

• If necessary, handle any unexpected errors conditions and display the AFF error page.

5.2.9.3. MVC View
In AFF, the MVC views are implemented as JavaServer Pages to render the HTML screen to the user.
Every JSP is provided with a view adapter – a Java object created by the controller that passes the
business objects created by the service layer. The JSP is responsible for rendering the business objects
in the view adapter on the page in a manner consistent with the AFF look and feel.

Date Last Printed: 9/26/06 Page 101 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

AFF JSPs may be built from smaller JSP fragments like the header, footer, and left navigation. The JSP
fragments are common UI elements that appear on every page.

5.2.9.4. MVC Model
In AFF, the MVC model is implemented as a three separate layers – the service, factory, and builder.
The layers work together to create business objects for the controller.

5.2.9.4.1. Service
Based on the request from the controller layer, the service layer creates AFF keys and invokes AFF
object factories to build business objects. The AFF key acts as the “primary key” for the business
object. Every business object is uniquely identified an AFF key. The business objects are returned to the
controller.

5.2.9.4.2. Factory
AFF uses the factory design pattern to create AFF business objects. The factory design pattern allows
users to create business objects without understanding the details of their construction from Oracle. The
AFF key contains the information the factory needs to create the object.

To create a business object, the factory does the following:

• Validate the AFF key object and make sure it contains the necessary information

• If the factory is configured as caching, it checks for the requested object in its object cache. Objects
are indexed by key.

• If the object exists in cache, it’s returned to the caller

• If the object doesn’t exist in the cache, or if the factory is configured as non-caching, a request to
build the object is delegated to an AFF builder. Before returning the business object to the caller,
a caching factory stores the object in cache, indexed by key.

5.2.9.4.2.1. Factory Caching
AFF contains a custom-built object-caching layer. Factories can be configured on a case-by-case basis
to cache the objects they create. Caching makes sense for business objects that are expensive to build
and frequently accessed in terms of database resources. The caching subsystem is highly configurable
and allows the AFF administrator to control the object aging policy and maximum object cache size on a
per-factory basis. In low-memory situations, cached objects can be deleted to free-up memory.

Each AFF object cache is defined as serializable. A serializable object is one that can be written to and
read from disk. At startup, AFF looks for serialized cache files on disk to quickly re-instantiate the
expensive in-memory object caches.

The AFF administrator manages the creation and loading of the AFF object serialization files.
Serialization files can become stale if the business objects they represent are updated in the underlying
Oracle database. Therefore, the serialization files are routinely deleted once a day, or immediately after
any database changes.

5.2.9.4.3. Builder
The AFF factory delegates the work of creating objects to the AFF builder. Using the AFF key, the
builder creates business objects by issuing SQL queries against the AFF data warehouse or metadata
repository. Generally, the SQL needed to populate a business object is embedded directly in the builder
java code, as opposed to a stored procedure. After the SQL query is executed, the builder instantiates
the requested AFF object(s) and returns them to the factory.

Builders are the only AFF components with direct knowledge of SQL. Builders use WebSphere
connection pools to acquire and release database connections. WebSphere’s database connection
pooling is part of the J2EE infrastructure and form AFF’s data access layer.

Date Last Printed: 9/26/06 Page 102 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.2.9.5. Business Objects
Business objects (also called domain objects) represent the business entities within AFF. A business
object may represent a single row, or many rows, in an Oracle table, or may represent a complex join of
multiple tables in Oracle.

There are approximately 100 business objects in AFF (the number grows as new presentation formats
and functions are added). Some example business objects in AFF, each implemented as a Java class:

• Dataset – represents a Census dataset,

• DataItem – represents a data item in a demographic table or an Economic dataset table,

• GCTRowStub – represents the “row stub” portion of geographic comparison table,

• GeographyBucket – represents an AFF geobucket,

• MatrixTable – represents a Matrix Table

• JamValue – represents a “jam value” or substitution value that replace one value in a table cell with
another value

In summary, a business object usually represents an object (like a Matrix Table) or part of an object (like
a Jam Value) visible to the end user. A business object is created by a builder, based on a key, and
managed by a factory. Business objects themselves know nothing about Oracle or relational databases.
The service, factory and builder layers define AFF’s MVC model layer.

5.2.9.6. Data Access
AFF uses WebSphere connection pooling to manage its database connections with Oracle and DB2. At
startup, WebSphere allocates a fixed number of connections to each database. The AFF administrator
configures and controls the size of each pool. The connection pool size is a key tuning parameter for the
AFF system.

Generally, creating and deleting a database connection is much more expensive operation than actually
using the connection. Pooling database connections eliminates the need to constantly create and delete
connections by creating a finite pool of reusable connections that are created once and never deleted.

The AFF builder acquires a connection from the pool, uses it to issue a SQL query to Oracle, and then
releases it to the pool. If all the connections in the pool are in use, new requests block waiting for an
available connection.

It’s critical for the performance of interactive web-based database applications like AFF that database
queries be fast.

AFF connections and queries are monitored in order to tune pool efficiency and to minimize long running
SQL queries that could exhaust the connection pool and/or degrade system performance.

5.2.9.7. Session
The HTTP protocol between a web browser and web server is stateless, which means each connection is
made without any reference to previous connections. Session is a technique that overcomes the
stateless nature of the HTTP protocol, and allows a user to engage in a “stateful” interaction with an
application.

American FactFinder uses the HTTP Cookie method to transfer the session identifier on each HTTP
request from the browser to the server. Technically, AFF uses only transient cookies, which are valid
for the duration of the user’s browser session; they are not saved to the user’s local browser Cookies
folder. The session identifier is used to accumulate state information on the server in a session object
without transferring that information with every page request.

The session object is a Java object provided as part of the J2EE infrastructure. The session object is
stored in a persistent session database shared by all the application servers in the WebSphere cluster.
At the end of each servlet call, if the session object has changed, it is converted to a string (in a Java

Date Last Printed: 9/26/06 Page 103 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

process called serialization) and written as a record in a persistent session database, indexed by the
session identifier.

For AFF, the session object is subdivided into separate compartments, one for each of the contexts in
the American FactFinder application (Quick Tables, Geographic Comparison Tables, Detailed Tables,
Thematic Maps, Reference Maps, Custom Tables, etc.)

Each compartment of the session object stores the user’s selected dataset, tables, themes, geographies,
geographic components, characteristic iterations, etc. for that context. When a user navigates to a
context previously visited in the same session, AFF attempts to restore the user’s previous settings if
possible.

5.2.9.8. Session Database
To provide session failover for stateful applications in a clustered environment, IBM WebSphere
Application Server supports a persistent session database as part of the core J2EE WebSphere
infrastructure.

For every user request, the application server clone extracts the session identifier from the HTTP request
header, and either creates a new session (if there’s no cookie), or retrieves the session object from in-
memory cache, or the session database. Any changes to the session object are written back to the
session database.

The session identifier encodes the WebSphere node and clone name that served the page. IBM Edge
Server and the HTTP Plug-In work together to make a best effort to return a given user to the same
server (using Edge Server’s IP address server affinity) and same clone (using the HTTP Plug-In’s
workload manager that uses the session identifier to achieve clone affinity) for each page request.

When a user exits their browser, the browser cookie is discarded by their browser, and the corresponding
WebSphere session object is orphaned. A separate clean-up process removes discarded session
objects from WebSphere memory and the DB2 session table after a certain period of inactivity (timeout
parameters are WebSphere configuration parameters).

5.2.10. Logging
AFF logs a detailed XML formatted record to a file for every result page it serves (a result page is
defined as a page that serves a table or map to the user). To save disk space, AFF does not log user
navigation pages like “select geo” or “select table”. The AFF XML logs provide more detail about the
user’s request than can be captured in the HTTP web logs. Nightly, the XML logging records are loaded
into a User Activity database. Reports generated on the User Activity database provide detailed insight
into how users access American FactFinder.

5.2.11. AFF Logical Data Structure
There are a total of eight logical data stores associated with the AFF production system. Note that some
data stores may live in the same physical database, but under different schemas for logical separation.
Specifically, the User Activity database resides in the EMDR database under a separate schema.

The Metadata databases contain data that support the AFF user interface and metadata about tabular
and geospatial data:

6. English Metadata Repository (EMDR)

7. Spanish Metadata Repository (SMDR)

The Data databases contain tabulated demographic and economic data, and geospatial data from the
Census TIGER system:

8. Data Warehouse (DW) for tabular data

9. Spatial Data Warehouse (SDW) for geospatial data

Date Last Printed: 9/26/06 Page 104 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The WebSphere Administrative and Infrastructure Support databases support the WebSphere
runtime environment:

10. Session Database (SESS)

The Feedback database is a write-enabled database that captures user online feedback messages:

11. Feedback Database (FB)

The User Activity database is a write-enabled database used for offline batch loading of the user activity
records logged daily by AFF:

12. User Activity Database (UA)

All of the databases are Oracle, with the exception of the WebSphere Administrative and
Infrastructure Support system that runs DB2. The DB2 database is provided as part of the WebSphere
Application Server and is the recommend database for the session database.

The Sagent address lookup tables (files) are used by ArcIMS for geocoding an address to a AFF census
block.

5.2.11.1. English Metadata Repository (EMDR)
AFF uses the metadata stored in the AFF Metadata Repository (MDR) to control user navigation and for
data presentation. The MDR is an Oracle database. There are two MDRs, one for the English-language
(EMDR) and another for the Spanish-language (SMDR). The MDRs are structurally the same, but the
SMDR contains metadata for Puerto Rico only.

The metadata is also a “roadmap” for finding tabular data within the AFF Data Warehouse (DW).

The data stored in the Data Warehouse is organized around several major functional groups:

• Meta Central – Common metadata for all subject areas and configuration & control metadata

• Data Sets – Metadata for the products and navigation paths available for a data set

• Map View Group Management – Metadata for the spatial data in the Data Warehouse & Spatial DB

• Matrix Tables – Metadata for the detail tables in the Data Warehouse

• Virtual Tables – Metadata for the derived products within the Data Warehouse

• Non Spatial Geo – Metadata for geographic navigation and selection

• Survey Products and Questionnaires – Tier 1 products including PDF files and survey information

• Thematic Maps – Metadata for thematic maps

• Deliveries and Loads – Metadata associated with the processing of data and metadata

5.2.11.2. Spanish Metadata Repository (SMDR)
Structurally, the Spanish Metadata Repository (SMDR) is identical to its English counterpart. The main
difference is all the metadata visible in the AFF user interface have been translated into Spanish. The
SMDR supports the Spanish component of the AFF web application, which presents the user interface in
Spanish, and highlights only the Decennial 2000 Census data for Puerto Rico. Only metadata for Puerto
Rico is loaded in the SMDR.

5.2.11.3. Data Warehouse (DW) for tabular data
The AFF Data Warehouse (DW) is an Oracle database used to store large quantities of tabulated
demographic and economic Census data. Unlike a star schema, there are no dimension or fact tables in
the DW. Each tabular table resides in a separate Oracle table. The presentation instructions for each
table are contained in the AFF Metadata Repository. This decoupling of data and presentation into
separate databases is part of AFF’s overall metadata-driven approach.

Date Last Printed: 9/26/06 Page 105 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

There is no separate Spanish Data Warehouse for Spanish language data as the information in the data
warehouse is language independent.

Each DW table represents a tabulated table for a BOC program, survey, year and product combination.
The AFF Data Warehouse (DW) contains the following objects:

• Matrix tables for Demographic surveys (several thousand tables). Matrix tables are indexed by
GEO_ID (or GEO_ID and characteristic iteration for iterated products). The program, survey, survey
year, dataset, and matrix name are encoded in the table name (e.g., DEC_2000_SF1_U_H003). The
matrix tables are the source for AFF’s demographic detailed tables, quick tables, and geographic
comparison tables.

• Dataset tables for Economic surveys (several hundred tables). The structure of the Economic
datasets is highly variable, depending on the information collected for that industry. The structure of
each dataset table is defined in the AFF Metadata Repository.

• SQL database views for Demographic and Economic derived products. The demographic derived
product views are created by the AFF Spec Processor tool, and are created as part of the overall
process of creating derived products in American FactFinder. The Economic derived products
(Geographic Quick Reports, Industry Quick Reports, and Product Quick Reports) are created with a
separate process by the DADS staff, and not with the Spec Processor,

• Copies of six MDR tables are in the DW to improve the performance of the AFF system. Local
copies avoid costly joins between the DW and MDR databases. During the final rendering of a table,
the AFF application has to join data from the DW with the MDR; these local copies significantly
improve the performance of this task.

• A small collection of database stored procedures, functions, and custom object types to support the
Economic Census. Generally in AFF, the SQL code is embedded in the Java application, not the
database. These stored procedures are the exception to that rule.

5.2.11.4. Spatial Data Warehouse (SDW) for geospatial data
The Spatial Data Warehouse (SDW) is an Oracle database that stores spatial file deliveries from
Geography Division (GEO). Spatial files store coordinates that describe the location and shape of
geographic features, thereby allowing for their depiction in map form. AFF’s spatial database supports
the following AFF functionality:

• map-based selection of one or more geographies as part of a data query,

• the creation of reference maps for identification of survey-specific geographies,

• the creation of thematic maps to aid data visualization.

AFF does not directly access the SDW. AFF interacts with the mapping subsystem using ArcIMS, which
in turn leverages the ArcSDE middleware to query and retrieve geospatial data from the Spatial Data
Warehouse.

The Spatial Data Warehouse is independent of language; the same database is used for both English
and Spanish language geospatial data.

5.2.11.5. Session Database (SESS)
The session database (SESS) is a DB2 database used by the WebSphere J2EE infrastructure to store,
retrieve, and delete serialized user session objects. The session objects are stored in a simple DB2
table, with fields that track the session “create” and “last update” date and time. The session object is
stored as a BLOB (binary large object) field. The session identifier is the primary key for the session
table.

Periodically, each WebSphere clone executes a process to delete abandoned session objects from the
database. Users who attempt to access an abandoned session object receive the “Session Timeout”
error page.

Date Last Printed: 9/26/06 Page 106 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

All of the clones in the WebSphere cluster write to and read from the same session database. A separate
database connection pool, configured by the WebSphere administrator, is used to control access to this
database.

5.2.11.6. Feedback (FB)
AFF user feedback messages are stored in the Feedback (FB) Oracle database. The feedback record
contains all the fields on the form (feedback, name, email address, phone number) as provided, as well
as additional fields, not visible to the user, that track the page on which the error occurred, the content of
the session object, and any Java error message. This extra information assists the AFF technical team to
debug user problem reports.

The Feedback records are periodically transferred to the AFF Internal Review system for further analysis
and processing, and also shared with the RightNow system.

The same Feedback Database is used for both English and Spanish language feedback messages.

5.2.11.7. User Activity (UA)
The User Activity (UA) Oracle database contains detailed information about every result page served by
AFF. (A result page is defined as a page that displays a table or map.) These detailed logs capture more
information than is possible in the HTTP web server logs. Specifically, the following information is
captured from the user’s session, for every result page:

• The session identifier,

• If the request was a download, the download format used (Excel, TXT, etc.),

• The dataset and geobucket,

• The list of geographic summary levels, and a count of how many instances of each summary level,

• The list of tables and characteristics iterations,

• The Economic dataset name for an ECON request,

• The GEO_ID, theme, and service name used to create the map for a mapping request,

5.3. Separation of Concerns and Architectural Tiers
Separation of Concerns is the process of breaking a system into distinct components that overlap in
functionality as little as possible.

AFF achieves separation of concerns using a combination of design principles, including:

• Layers – Components operate independently from the operations of the other system components.

• Information Hiding – Components hide design decisions while providing a stable interface.

• Encapsulation – Components represent abstractions of domain entities; and each component
provides the data and the well-defined APIs (methods) to access the data.

5.3.1. Architectural Tiers
At the highest architectural level, the Separation of Concerns organizes the AFF System into distinct
layers, called Architectural Tiers, as shown in Figure 72 below:

Date Last Printed: 9/26/06 Page 107 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Client Tier

Presentation Tier

Business Tier

Integration Tier

Resource Tier E
nh

an
ce

d
In

fr
as

tr
uc

tu
re

Figure - Layered Architectural Pattern
Version - 1.0 Date - 2005-01-26

Figure 72: AFF Layered Architectural Pattern

The six layers are:

• Client – includes all device or system clients accessing the system or the application.

• Presentation – encapsulates all presentation logic required to service the clients that access the
system.

• Business – provides the business services required by the clients.

• Integration – responsible for communicating with external resources and systems such as data
stores and legacy applications.

• Resource – contains the business data and external resources.

• Enhanced Infrastructure – subsystems common to more than one tier.

5.3.1.1. Benefits of Layering
Layering provides the ability to modify the behavior of a layer (concern) without affecting the other layers.
Examples:

• Integrating a text-to-voice reader only affects the software used in the Client Tier.

• Enhancing the look and feel of the interface only affects the code in the Presentation Tier.

• Modifying business rules only affects code in the Business Tier.

• Switching the connection between the Business Tier and a different Resource Tier instance is
handled by changing the configuration of the Integration Tier.

• Adding additional survey data affects only the databases in the Resource Tier.

Layering restricts the impact that changes in one tier has on another tier. Examples:

• If users start using a new browser (Client Tier) that requires significant changes in AFF, only the code
in the Presentation Tier is affected.

• If a new database schema stores data differently in the Resource Tier, then the code in the
Integration Tier is changed to retrieve the data differently from the Resource Tier; the Business Tier
remains unchanged.

Layering allows modular changes for system-wide enhancements that ease later maintenance. For
example, adding charts to AFF could result in:

• Adding a charting library module.

• Adding an interface to the charting library in the Integration Tier.

Date Last Printed: 9/26/06 Page 108 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Adding new business rules to the Business Tier.

• Adding new interface pages to the Presentation Tier.

If later performance testing shows that better performance could be achieved using a standalone charting
server instead of a linkable library, then the necessary changes could be isolated to:

• Adding a charting server to the Resource Tier.

• Adding an interface to the charting server in the Integration Tier.

The Business, Presentation, and Client Tiers would be unaffected.

5.3.1.2. Benefits of Information Hiding
Information hiding allows the internals of a concern, which can be a layer or a module inside a layer, to
present a standard interface (APIs) that does not change even if the concern’s internal representation or
business rules are modified. Examples:

• Upgrading the mapping subsystem software release in the Resource Tier does not affect the other
tiers.

• Enhanced functionality with APIs identical to the basic functionality allows the enhanced functionality
to be enabled/disabled with only configuration changes. This design is used throughout AFF,
including for:

• Persistent vs non-persistent objects.

• Single-threaded vs multi-threaded searches.

• A view adapter object is created in the Business Tier containing the content necessary for a
JavaServer Page (JSP) in the Presentation Tier to format a page; the JSP operates on the view
adapter contents independently of how the view adapter was created and populated. E.g. This design
pattern allows multiple data sources to use view adapter objects and the JSP to display Detailed
Tables for all Detailed Tables in a data set, and for data sets across multiple programs.

• The complex geography selection workflow step with many variations is a single “black box”
subsystem and used throughout AFF.

5.3.1.3. Benefits of Encapsulation
Encapsulation allows a concern to be self-contained and isolated from changes in other concerns;
whether between layers or between the modules in a layer. Examples:

• A map object contains the map parameters and data; to pan (re-center) a map requires invoking a
method on the map object to specify the new point on which to re-center the map. The map object
contains all the logic and data necessary to rebuild the map based upon the new location. Invoking
another object to act upon the map is not required (e.g. pan-by-dragging maps added in R10.1).

• The complex geography selection workflow step can be enhanced with minimal impact to the rest of
the AFF System (e.g. the addition of the “full or partially contained” functionality to Geo-Within-Geo).

5.4. AFF Component Model
5.4.1. Custom Components
Each tier within the AFF architecture makes use of design patterns to create custom components. This
section lists and briefly describes the architecturally significant design patterns used by a tier and any
additional custom components. Other sections in this document describe the detailed design of the
custom components using these patterns. The following references define and explain the basic concepts
associated with design patterns:

• Design Patterns: Elements of Reusable Object-Oriented Software

Date Last Printed: 9/26/06 Page 109 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Core J2EE Patterns: Best Practices and Design Strategies

5.4.1.1. Client Tier

Client Tier

Presentation Tier

Business Tier

Integration Tier

Resource Tier E
nh

an
ce

d
In

fr
as

tr
uc

tu
re

The Client Tier consists of the user agents invoked by end-users to
access AFF; these user agents send requests to AFF and render the
responses returned by AFF. As a result, the user agents are
responsible for the interpretation of the AFF user interface and
ultimately the end user experience.

This becomes a significant design and implementation issue for AFF
as user agents are not supplied or hosted by AFF, but rather are
selected by, and executed on, the end users’ systems. Thus, a major
design goal is that AFF must work with a wide range of user agents.

5.4.1.1.1. Design Patterns and Considerations
The AFF Client Tier follows these design considerations:

• Common User Agent Types

• Census Bureau Web Standards

• Cookies

• Client-Side Request Validation

The AFF Client Tier uses these design patterns:

• Bookmarking

• HTML Forms

• Caching by User Agent and Proxy Servers

5.4.1.1.2. Common User Agent Types
AFF actively supports the following common user agent types across multiple end-user platforms:

• Browsers such as Internet Explorer (IE), Netscape, Firefox, Opera, and Safari.

• Section 508 Tools such as JAWS and Window Eyes.

• Web Robots such as Googlebot, MSNBot, and Yahoo! Slurp.

The exact list of user agents and types changes over time based upon:

• Analysis of the user agents reported in the AFF web server logs.

• Census Bureau (internal) intranet standards.

• Industry (external) web standards.

• Federal regulations.

5.4.1.1.3. Web Standards
AFF follows industry web standards and best practices to ensure support of wide range of user agents.

The design of AFF assumes minimal user agent capabilities in the Client Tier: user agents use the HTTP
communications protocol for communications with the presentation tier, and content is passed between
these tiers using the URL and HTML.

Date Last Printed: 9/26/06 Page 110 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The specific web standards targeted by AFF include:

• HTML

• Separation of Presentation and Content using Cascading Style Sheets (CSS)

• JavaScript

• Internationalization

• Section 508 Compliance

• HTTP

• FTP

• PDFs

See the Zero Footprint on Browser and Section 508 sections for further design information on how AFF
uses web standards to work with multiple user agents and platforms.

 See The Web Standards Project at http://www.webstandards.org/ for information on web standards.

For maximum support of all types of user agents, AFF is designed to provide increasing functionality
based upon the capabilities of the user agent. A modern web browser and platform allows access to all
AFF functionality while an older user agent may have limited access to AFF functionality as shown in
below Figure 73.

Display Bookmarked Map
+ Image Display

Figure - User Agent Support
Version - 1.0 Date - 2005-06-23

Display Bookmarked Table
HTTP Protocol
HTML Parser

Robot Navigation
+ Follow HTML Hyperlinks

Interactive Navigation
+ HTML Forms
+ JavaScript
+ CSS
+ Transient Session Cookie Support
+ 800x600 Display Resolution

Downloading
+ FTP Protocol
+ ZIP File Format Support

A
FF Functionality A

vailable

U
ser A

gent C
apabilities

Text User Agent
(e.g. Links)

Graphical User Agent
(e.g. Netscape 4.0)

Robot User Agent
(e.g. Googlebot)

Modern Interactive User Agents
(e.g. IE 5.5+, Netscape 7+)

Modern User Agent w/ supporting tools
(e.g. IE with WinZip)

Figure 73: User Agent Support

The use of web standards allows web pages generated by AFF to be “reasonably” generic without
significant conditional code to handle the idiosyncrasies of various user agents. Unfortunately, the
rendering engines in the two major user agents, IE and Netscape, are not completely compatible, making
it impossible to remove all condition coding. Over time, AFF has moved to using Cascading Style Sheets
(CSS) to handle most of the conditional presentation formatting.

5.4.1.1.4. Cookies
As per federal guidelines (http://www.whitehouse.gov/omb/memoranda/m99-18.html and
http://www.whitehouse.gov/omb/memoranda/m00-13.html), AFF uses only transient session cookies.

http://www.webstandards.org/
http://www.whitehouse.gov/omb/memoranda/m99-18.html
http://www.whitehouse.gov/omb/memoranda/m00-13.html

Date Last Printed: 9/26/06 Page 111 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Transient session cookies are required by AFF to uniquely identify users for the duration of their sessions
to allow AFF to manage a user’s session context at the server for efficient use of its resources.

5.4.1.1.5. HTML Forms
AFF uses HTML forms for sending data to AFF from the user agent. The HTML forms are used in two
ways:

• Visible forms used for user selection of data (common usage).

• Hidden forms used for creating requests based upon user inputs (workaround for referrer).

The original design of AFF made extensive use of the following JavaScript technique to invoke requests
for a new page:
location.href = "NewRequestURLAndParameters";

However, it was discovered that with many user agents, this approach created an empty referrer string in
the new request and, as a result, the referrer was not stored in the AFF logs. The missing referrer
prevented analysis of AFF logs for user navigation paths and other useful information. Thus, to ensure
valid referrer reporting, AFF now uses hidden forms to submit requests as shown in following code
fragment:
<script language="JavaScript" type="text/javascript">
function mpGeoSearch() {

set values in hidden form
 document.hidden_form.submit();
}
</script>
…
<form name="hidden_form" method="get" action="NewRequestURL">
<input type="hidden" name="parameter1" value="defaultValue" />
<input type="hidden" name="parameter2" value="defaultValue" />
…
</form>

5.4.1.1.6. Bookmarking
AFF is designed such that the URL of any result page, such as a thematic map web page or a detailed
table web page, is bookmarkable. That is, the user can copy the URL and use it at a later point in time to
retrieve the same result page.

AFF converts an incoming request for a result page to a bookmarkable URL and the browser is redirected
to this new URL; the redirect is achieved in a manner transparent to the user.

The bookmarkable URL is generated using the values in the session context for the current subsystem. If
the length of the generated URL exceeds a predetermined limit, an attempt is made to gracefully degrade
the amount of data presented on the page in order to shorten the URL. This degradation process is
specific to the context; a common strategy is to minimize the number of geography and table selections to
what is currently displayed on the screen.

5.4.1.1.7. Caching by User Agent and Proxy Servers
AFF, like many other web applications, relies upon caching by the user agent and external proxy servers
(e.g. AOL) to enhance performance. For example, the same common CSS and image files are used
across multiple web pages so that local caching by the user agent of these common files reduces page
load times after the first hit.

However, caching is a potential problem for AFF web pages where JavaScript is used to request a page
update using the same URL as the calling page, such as on the AFF selection pages. In these cases, the
use of a cached web page would cause unexpected behavior. AFF forces a non-cached page by
appending a unique timestamp parameter to the URL request using JavaScript functions. The timestamp
is created based upon the current time and passed using the _ts parameter.

Date Last Printed: 9/26/06 Page 112 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 See the JavaScript file timestamp.js for the timestamp functions.

AFF does not use the HTTP header Expires or Cache-Control directives.

5.4.1.1.8. Client-side Request Validation
AFF uses JavaScript to perform client-side validation of inputs before requests are sent to AFF for
processing.

The use of JavaScript is due to the complex domain associated with Census Bureau data. This design
choice prevents web robots, such as search engines, from using the standard user interface to navigate
through AFF. As a result, the CLP user interface was added as an alternate pure HTML (no JavaScript)
user interface for web robots and other user agents that do not support JavaScript.

JavaScript is not required for the presentation of most AFF result pages; thus, an AFF result page can be
viewed by any user agent. This design approach allows users using almost any user agent to access and
view a table or map result page from a search engine or bookmark.

5.4.1.2. Presentation Tier

Client Tier

Presentation Tier

Business Tier

Integration Tier

Resource Tier E
nh

an
ce

d
In

fr
as

tr
uc

tu
re

The Presentation Tier is the architectural layer in the AFF Application
that takes the domain business objects provided by the Business Tier
and creates the web page content sent to the Client Tier.

The design of AFF leverages the use of the Presentation Tier to
present different views (user interfaces) using the same common
infrastructure (Client, Business, Integration, and Resource Tiers). For
example, the CWS and SAFF user interfaces share much of the same
underlying implementation. Likewise, the English and Spanish
language versions of AFF share same implementation; the differences
are the data in a URL parameter, the metadata repository, and the
language catalog.

5.4.1.2.1. Design Patterns and Considerations
The AFF Presentation Tier follows these design considerations:

• Session Management Approach

• Server-Side Request Validation

• JSP Design Approach

The AFF Presentation Tier uses these standard J2EE design patterns:

• Front Controller/Application Controller

• View Helper

• Service to Worker

• Components

• Controller

• View Adapter

• View

5.4.1.2.2. Session Management Approach
Transient session cookies are used by AFF to uniquely identify users for the duration of their sessions to
allow AFF to manage a user’s session context at the server.

Date Last Printed: 9/26/06 Page 113 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.4.1.2.2.1. Manage Client State on Server
A user’s session context is stored in the AFF Server’s HTTPSession; this approach provides persistence
of the user’s current selections within a session. Only changes to the context are passed on requests and
responses; this approach avoids having to embed (burden) the entire context on each request and
response (web page).

Session context includes geography and product selections made; this approach allows a large number
of geographies to be selected and used without a significant impact to every subsequent request and
response.

5.4.1.2.2.2. Persistent Session requires Serializable Session Object
The Java objects stored in the session context must implement the Serializable interface to ensure
that these objects can be written into the session database for failover recovery.

5.4.1.2.2.3. Concept of AFF Context
Conceptually, AFF is collection of subsystems, or mini-applications, and the session context is maintained
for each subsystem (Detailed Tables, Quick Tables, etc.); this approach provides Subsystem Persistence
within a session.

The result is that a user can switch between subsystems while maintaining their choices within each
subsystem.

AFF provides a load/save query capability that uploads / downloads the currently selected subsystem’s
context from/to the end-user’s system. There is also a Clear all selections capability that clears the
session contexts for all subsystems.

5.4.1.2.3. Server-Side Request Validation
The AFF Application validates all incoming URL parameters and request content to avoid issues with
corrupted or malformed inputs.

5.4.1.2.4. JSP Design Approach
The JSP design approach used by AFF is outlined by the following points:

• Use compile-time include files for common content (banners, footers).

• Use compile-time include files for common data-driven design elements (menus, tabs).

• Use run-time include files for template content well content (as used in SAFF and CWS).

• Avoid hard-coding any language-specific content in the JSP (use view adapters and language
catalogs as the source for language-specific strings).

Date Last Printed: 9/26/06 Page 114 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.4.1.3. Business Tier

Client Tier

Presentation Tier

Business Tier

Integration Tier

Resource Tier E
nh

an
ce

d
In

fr
as

tr
uc

tu
re

The Business Tier is the architectural layer in the AFF Application that
contains the business data and the rules used to manipulate this. The
business data is retrieved from the Resource Tier via the Integration
Tier, stored and manipulated in Business Objects, and then the
business objects are passed via view adapters to the Presentation Tier
for building the presentation of the business objects at the Client Tier.

A Business Object is the abstraction of an entity in the domain; for
example, a data set or a map. AFF business objects encapsulate both
the data and behavior associated with the entity that it represents.

5.4.1.3.1. Design Patterns and Considerations
The AFF Business Tier follows these design considerations:

• Application-Level Caching of Complex Objects

• Application-Level Cache Serialization

• Unique Identification of Business Entities (Key)

The AFF Business Tier uses these standard J2EE design patterns:

• Factory Methods

• Singleton

• Components

• Business Controller – Service (Table, Mapping, Search, Browse)

• Factory

• Application Cache

5.4.1.3.2. Application-Level Caching of Complex Objects
For performance, AFF is designed to cache complex business objects within the AFF application. These
cached business objects include database query results from both the metadata repository (e.g. the list of
States in United States) and from the data warehouse (e.g. population finder results).

The cache design and implementation are custom to AFF; this design approach was chosen for several
reasons:

• There is no 1:1 correspondence between the business objects and database tables.

• The data is read-only access.

• There are no significant security and access control requirements.

• J-Cache did not exist when AFF was originally design

• Enterprise JavaBeans (EJBs) were not an optimal solution (see the first three bullets).

5.4.1.3.3. Application-Level Cache Serialization
AFF is designed such that the cache contents from one AFF instance can be exported to disk and then
loaded into another AFF instance. This allows the contents of the cache on one leg of AFF to be loaded
into another leg of AFF without having to rebuild the cache from the database.

Date Last Printed: 9/26/06 Page 115 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

As a result, the Java objects stored in an application-level cache session context must implement the
Serializable interface to ensure that these objects can be written to disk.

5.4.1.3.4. Unique Identification of Business Entities (Keys)
The design of the AFF application-level caching mechanism requires a unique key to locate the object
within the cache; similar in concept to a primary key in a database.

In addition, the key is designed to contain all the information necessary for an object’s builder to recreate
the object from the database if the object is not found in the cache.

5.4.1.4. Integration Tier

Client Tier

Presentation Tier

Business Tier

Integration Tier

Resource Tier E
nh

an
ce

d
In

fr
as

tr
uc

tu
re

The Integration Tier is the architectural layer in the AFF Application
that retrieves data from the Resource Tier based upon requests from
the Business Tier.

The Integration Tier provides AFF System with failover recovery of the
Resource Tier. The Integration Tier isolates the Business Tier from the
Resource Tier and thus allows the AFF production system to failover
from one Resource Tier instance to another instance in real-time. This
same design approach allows mapping systems and databases to be
updated/replaced in the production without downtime.

5.4.1.4.1. Design Patterns and Considerations
The AFF Integration Tier follows these design considerations:

• Building SQL Statements

• Closing Connections

• JDBC Exceptions Crossing Tiers

• Uniquely Identifying Objects

The AFF Integration Tier uses these standard J2EE design patterns:

• Data Access Objects (Builders)

• Transfer Objects (Domain)

• Connection Pooling

• Producer-Consumer

5.4.1.4.1.1. Building SQL Statements
The complexity of possible user queries requires AFF to dynamically build the SQL used to access the
databases. Typically, the SQL statements are built from “snippets” of SQL code defined in the builders.
The “IN clauses” in WHERE statements can become particularly complex when users select thousands of
geographies and characteristic iterations across more than one table.

5.4.1.4.1.2. Closing Connections
It is imperative that the AFF application close opened JDBC connections as soon as possible in order to
make available the database resources for other pending requests. This goal is achieved using two
methods:

Date Last Printed: 9/26/06 Page 116 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• The AFF Application uses a well-tested package, gov.census.aff.dataAccess, for database
access, and

• Data access is implemented using try-catch-finally blocks to ensure that database connections are
closed using the finally block regardless of program flow.

5.4.1.4.1.3. JDBC Exceptions Crossing Tiers
JDBC exceptions in AFF are either:

• Handled immediately by the implementation, or

• Mapped into an AFFException and passed upwards through the tiers to trigger an AFF
Error/Exception Page.

This design makes any run time exceptions very visible; this design choice was made based upon the
following facts about the AFF:

• The data is read-only.

• New data is added only occasionally and/or on a well-known schedule.

• The system and application configurations are static.

• The navigation paths are well-defined and strictly controlled.

As a result, any JDBC errors found at run time are likely due to unrecoverable configuration,
implementation, or resource issues.

5.4.1.4.1.4. Uniquely Identifying Objects
To work with the application level caching, the Integration Tiers’s builders expect requests with data (“the
key”) that uniquely identifies the object requested using the same keys as used in the application level
caching. See 5.4.1.3.4 above.

5.4.1.5. Resource Tier

Client Tier

Presentation Tier

Business Tier

Integration Tier

Resource Tier E
nh

an
ce

d
In

fr
as

tr
uc

tu
re

The Resource Tier is the architectural layer in the AFF System that
contains the resources and data retrieved by the Integration Tier upon
request from the Business Tier.

Examples of resources found in the Resource Tier include the:

• Data Warehouse (DW)

• Metadata Repository (MDR)

• Spatial Database

• Session Database

• Mapping Subsystem

• Configuration Files

5.4.1.5.1. Design Patterns and Considerations
The detailed design of the Resource Tier is not within the scope of this document.

5.4.1.5.2. Use of Stored Procedures and Packages
AFF uses only a few database stored procedures and packages. This design choice is based both upon
the complexity of the dynamic queries needed by AFF and the time and resource restraints during the
initial AFF development cycle.

Date Last Printed: 9/26/06 Page 117 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.4.1.6. Enhanced Infrastructure

Client Tier

Presentation Tier

Business Tier

Integration Tier

Resource Tier E
nh

an
ce

d
In

fr
as

tr
uc

tu
re

The Enhanced Infrastructure Tier is the architectural layer in the AFF
Application with functionality (Java packages and classes) used
system-wide in the AFF Application.

Examples of this functionality include:

• Caching (gov.census.aff.persistence)

• Exceptions (gov.census.aff.util.exception)

• Pooling (gov.census.aff.pool)

• Startup (gov.census.aff.util.AFFStartUp)

• String Handling (gov.census.aff.util.StringUtil)

• XML Encoding (gov.census.aff.util.XMLUtil)

5.4.1.6.1. Design Patterns and Considerations
In general, Enhanced Infrastructure Tier components are designed to be as generic as possible to allow
reuse at any level within the application hierarchy.

5.4.2. Custom Infrastructure Components
The American Factfinder application relies on several infrastructure services, ranging from thread pooling
for performance optimization, to localization for multiple language support using catalogs for easy
maintainability of web page content. Although most of these services exist in some form in the base java
packages, these services have been customized to suit AFF. The following subsections briefly describe
some of these services and how they are used by the American Fact finder application. Detailed
descriptions for selected services are provided in later sections of this document.

5.4.2.1. Thread Pooling
Thread pooling refers to creation of a common infrastructure that can be used to run tasks in parallel and
can be shared between multiple user requests. Most resource pools are created with performance
optimization in mind. Allocating a new resource to process a HTTP request and to discard it at the end of
the request can be very expensive in terms of processing time. Most systems therefore use some pooling
of resources to optimize performance. A minimum number of resources are kept in a ready state at all
times. As a request comes in which requires a certain resource, it is given from the pool rather than being
created fresh. Upon fulfillment of request, this resource is returned back to the pool by the worker thread
to be used by the next user. A new resource is allocated only if the pool is exhausted. Several types of
resource pools are typically used by applications for example database connection pools, processor
pools, disk space pools etc. Thread pool is one such type of pool that reduces the unnecessary creation
of threads, instantiation of objects thereby improving the overall application throughput. AFF uses thread
pooling for advanced keyword and geography searches and place name search for SAFF although
pooling infrastructure is configurable to include or exclude items that can be pooled on a subsystem
basis. For a more detailed discussion on use of thread pooling by AFF, please see section 5.5.8 Thread
Pooling.

5.4.2.2. Connection Monitoring
AFF application does not actively monitor database connections at runtime but rather relies on JDBC
connection pool API for allocation, establishment and management of database connections. Whenever a
new connection is required to fulfill a user request, AFF application tries to acquire that connection from
JDBC connection pool. If all the connections currently in the pool are taken up by other requests, a new
connection is established by the pool and returned to the requesting thread transparently. In other words,
there is no way for the requesting thread to tell if the connection just acquired from the pool had been
used by other threads previously and relinquished back to it or if it was newly established. AFF

Date Last Printed: 9/26/06 Page 118 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

connection pool imposes an upper limit on the number of connections that can be maintained in the pool
simultaneously.

As stated earlier, AFF does not actively monitor database connections, query response times or any other
parameters that can be used as a measure of overall database health. Instead, this function is delegated
to EdgeServer advisor. This advisor keeps polling databases at regular intervals (configurable) and tracks
the time it takes to establish a connection and run a simple query. If the cumulative response time for
these operations is longer than certain predefined interval on a continuous basis, EdgeServer redirects
any new requests to busy pages. Access to AFF is resumed once the response times drop down to
normal levels. For more information on custom EdgeServer advisors see section 9.6.1 Custom Advisors
and section 5.5.11 Custom Advisor for WebSphere Edge Server.

5.4.2.3. AFF Language
AFF provides the capability of multiple language support. Currently American Factfinder supports English
and Spanish languages, with English being the default, but theoretically it is possible to support any
number of languages. Support of multiple languages is realized mainly at 2 levels:

5.4.2.3.1. Metadata support for multiple languages
An extensive metadata repository enables the dynamic nature of AFF application. This repository stores
among other things, names of geographies, lists of subjects etc. It is therefore essential, that, to support
multiple languages, different metadata repositories be maintained by AFF, one for each language. This
way these separate repositories can provide language specific metadata content to be displayed on AFF
pages. In principle these different metadata repositories can contain same metadata, which only differs in
how it appears on web pages while still being similar in coverage and extent. On the other hand, it is
possible that different metadata repositories contain not just localized metadata depending on language
but also the coverage of data varies. Latter is the case for Spanish version of AFF, which not only stores
information in Spanish but also limits the coverage to just Puerto Rico.

Difference in coverage of data presents some interesting challenges as most of user state is preserved in
the HTTP session. For example it is possible for the user to select some geographies on the English
interface that are not available in its Spanish counterpart and then switch to Spanish interface. As soon
as the user changes contexts between English and Spanish interfaces, AFF detects this scenario and
automatically removes geographies and other selections.

As the user navigates through AFF, AFF application keeps track of the user language context and uses
the correct metadata repository for that context. For this reason any new connection request to metadata
repository via MetadataDataSource.getConnection() call takes a locale object as an input
parameter. This is in contrast to other Data sources, which take no input parameter since all other
repositories are in no way dependent on language and are common across all languages.

5.4.2.3.2. Localization of web page content
Most pages that are presented to users as they navigate through AFF contain not just dynamic content
(that is metadata/data driven) but also certain semi-static content like instructions, labels, help pages etc.
The reason why it is “semi-static” is because it changes across languages but remains static for one
language. To facilitate this transition from one language to other, AFF uses language specific catalogs
that contain a language specific string to appear on web pages. These catalogs maintain strings to
appear on web pages by keys. The JSP pages include a string by key, which is looked up in the correct
catalog at runtime, ultimately resulting in language specific content. Following JSP fragment from
DDGeoSearchByList.jsp shows how the string for current user selection is included:
<%= html.getString("Current_geography_selections") %>

Most JSP pages in AFF include the lang.jsp file. This include file provides most common functions
related to language and localization support. In the above shown example, the function
html.getString() looks up the key “Current_geography_selections” in the relevant catalog and paints
it on the page. Since there are 2 languages that are currently supported by AFF, following catalogs
maintain the language specific strings:

Date Last Printed: 9/26/06 Page 119 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

HTMLCatalog_en.properties (For English language support)

HTMLCatalog_es.properties (For Spanish language support)

Besides localized strings, most AFF web pages also include images such as buttons to initiate certain
option, menu items etc. These images also have to be customized depending on user’s current language
context. Similar to maintaining 2 sets of catalogs, a duplicate set of images is also maintained. These
images are stored in separate directories but have the same names. For example an image for next
button in the English context may be stored as /images/en/next.gif while the corresponding image
for Spanish context may be stored as /images/es/next.gif. This convention allows AFF to only
know about the directories where the image is to be fetched instead of changing the image name
depending on a particular context. Again, as with catalogs, the directory to use for an image is provided
by the lang.jsp as the following example code fragment shows:
<img src="/img/<%= imgSubdir %><%= html.getString("Button_MapIt_SRC")

5.4.2.4. Catalog Services
Catalogs provide an easy way to externalize attributes that may change e.g. limits on number of cache
entries, number of connections in a pool, frequency at which memory thread runs, locations of servers
etc. Some of these attributes are relatively stable and change infrequently but others like locations of
servers, databases etc. change with each AFF deployment environment as it progresses in its lifecycle.
One of the most common uses of catalogs is for localization of AFF application. A separate catalog is
maintained for each language supported by AFF (currently English and Spanish), which provides
localized strings that appear on web pages. For example a key SAMPLE_KEY may exist in both English
and Spanish catalogs and contain a language specific value for that key in both the catalogs. The
application determines the right catalog to use depending on the locale it is running under and displays
the correct language specific string on the web page. See previous section for more details on use of
catalogs for localization.

Java API provides PropertyResourceBundle class that extends the abstract ResourceBundle
class. This concrete subclass manages resources using a set of static strings in a property file. One of the
major disadvantages of this class is that properties can’t be changed, added or deleted once a property
file is read. Moreover WebSphere caches property files at the startup time. As a result a change in the
property can’t be seen even if the property file is changed without a restart of WebSphere. Therefore,
instead of AFF Catalogs wrapping the PropertyResourceBundle class, they wrap the custom written
PropertyResourceBundleAFF class. This allows various properties to be altered at runtime. These
changes to the properties are affected by jsp tools, which can be found under the /jsp/nodeploy
directory. Class diagram in Figure 74 depicts the hierarchy of AFF catalogs

Date Last Printed: 9/26/06 Page 120 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

ResourceBundle
(from util)

AccessKeyCatalog
(from catalog)

HTMLCatalog_en
(from catalog)

HTMLCatalog_es
(from catalog)

HTMLCatalog
(from catalog)

AFFCatalog

execute(cmd : String, params : String) : void
getKeys() : java.uti l.Enumeration
put(key : St ring, value : String) : String

(from catalog)

<<Interface>>

IAFFRegistryCommandControlEntry
(from registry)

<<Interface>>LimitCatalog
(from catalog)

PersistentFactoryProperties
(f ro m ca ta log)

PropertyResourceBundleAFF
(from catalog)

RegistryCatalog
(from catalog)

SystemProperties
(from catalog)

ThreadPoolProperties
(from catalog)

Figure 74: Catalog Hierarchy

Table 16 below describes the role of each of the catalogs:

Catalog Name Role/Purpose
PropertyResourceBundleAFF Base catalog class
AccessKeyCatalog Manages property file that keeps passwords needed to update

resources on the fly. Used by JSP tools to authenticate access.
LimitCatalog Manages property file that keeps various limits observed by AFF like

number of geographies permitted, number of tables permitted etc.
HTMLCatalog Manages property file that keeps certain generic strings that appear on

web pages.
HTMLCatalog_en Manages property file that keeps English language strings.
HTMLCatalog_es Manages property file that keeps Spanish language strings.
PersistentFactoryProperties Manages property file that keeps various parameters used by persistent

factories e.g. cache size, how often should the cache be flushed etc.
RegistryCatalog Manages the list of all registries maintained by AFF.
SystemProperties Catalog that manages system wide properties e.g. frequency of

garbage collection, name of build, EdgeServer advisors etc.
ThreadPoolProperties Manages property file that keeps various parameters used by thread

pools e.g. minimum and maximum size of the pool etc.
Table 16: AFF Catalogs

5.4.2.4.1. Runtime update of properties using JSP tools
As mentioned above JSP tools in the nodeploy directory strive to modify certain application parameters
on the fly while the application is running so that the application can see the changes on a subsequent
invocation. Apart from just modifying certain string values found in the property files, these JSP tools can

Date Last Printed: 9/26/06 Page 121 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

also alter persistent factories, thread pools etc. For example, using the persistent factory tool, one can
modify the number of entries in a particular cache, delete entries from that cache etc. Such operations
involve more than just modifying some read only values. For example if the size of cache in a factory is to
be reduced, then the structures, which hold this cache in memory has to be truncated. This task is further
complicated by the possibility of having multiple clones running under one WebSphere instance. These
multiple clones can be thought of as different JVMs, which have to be synchronized although the request
was received (via JSP tool) by one clone. This is necessary to maintain overall system integrity. JSP tools
achieve this task by maintaining a registry of alterable objects (one each for Catalogs, Thread Pools,
Persistent factories and Access Keys). All the objects in these registries support some commands. For
example, catalogs support addition and deletion of entries while persistent factories support more
complex commands like changing the size of cache, etc. When a user initiates a request to change a
certain object, the registry that maintains this object, writes appropriate commands to fulfill this request to
a file. All the objects in other clones read these files periodically and sync themselves by executing the
same requests. For example if a user tries to add an entry key=value to one of the catalogs, the clone
which receives this request writes out a command such as PUT key=value in a file. All the other clones
then eventually read this file, parse its contents and execute all the instruction sequences to sync
themselves as needed. Figure 75 shows the hierarchy of classes involved:

<<contains>>

AFFRegist ry

register(key : String, element : Object) : Object

(from registry)

AFFRegistryCommandControl
(from registry)

IAFFRegistryCommandControlEntry

execute(cmd : String, params : String) : void

(from registry)

<<Interface>>

CatalogRegistry
(f rom catalo g)

AccessKeyRegistry
(from access)

ThreadPoolManager
(f rom thread)

PersistentFactoryRegistry
(f rom p ersistence)

HTMLCatalog
(from catalog)

<<contains>>

SystemProperties
(from catalog)

PersistentFactory
(from persistence)

<<contains>>

ThreadPoolWrapper
(from thread)

<<contains>>

Figure 75: Registry Hierarchy

As shown in Figure 75 above, AFF maintains four different registries namely CatalogRegistry,
AccessKeyRegistry, ThreadPoolManager and PersistentFactoryRegistry. All these
registries maintain objects of appropriate types. For example, CatalogRegistry maintains all the

Date Last Printed: 9/26/06 Page 122 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

catalogs used by AFF like HTMLCatalog (shown), ThreadPoolProperties,
PersistentFactoryProperties (not shown) etc. Similarly, PersistentFactoryRegistry object
maintains a list of all persistent factories used by AFF. As the JSP tool invokes certain commands these
registries write an output file containing all these commands and then calls the execute() method on
the registry entry for which these commands were intended. To adhere to a common contract, all entries
in these registry implement IAFFRegistryCommanControlEntry interface. For a complete list of
commands supported by each registry item, refer to the corresponding java source.

Although this functionality is rarely used in a live system, it provides valuable savings of time during
development by eliminating the need to restart server for every little change in a property file and
facilitates debugging.

5.4.2.5. Context Parser
The Oracle Context Parser tool allows AFF to support text-based searches. These text-based searches
are used for keyword searches, place names searches and industry searches. The Oracle database
maintains a pre-indexed table containing all the search terms, which can be used to look up a search
term. When a user searches, for example, for a geography by invoking place name search servlet, AFF
application issues a SQL query which includes a where clause something like
where (contains(geo_search.search_term, 'SYN({rochester}, GEO_SYNS)', 1) > 0)

The “contains” keyword in the query initiates the invocation of a context-based search. The search_term
column in geo_search table contains the search terms against which user’s search terms are validated.
Oracle automatically handles certain logical operators like ‘OR’ and ‘AND’ and also wild card characters
like ‘*’ etc. To AFF application, this context-based search is transparent except for including the “contains”
keyword. For more details on place name searches, refer to sections 5.6.3 Geography Selection and
5.6.10 Advanced Search.

5.4.3. Technical and Infrastructure Components
The technical and infrastructure components in AFF are the software packages, both custom and COTS,
which comprise the AFF System. Wherever possible, AFF is designed to use COTS software solutions.
Following software development best practices, AFF is designed using these principles concerning the
selection of COTS software solutions:

• Use existing models and well-established technology

• Use industry standard technologies and data standards

• Match the technology to the task, using best-of-breed COTS solutions when possible

• Leverage existing Census Bureau site licenses for COTS solutions

The following figure shows the relationships between selected AFF components and the AFF
architectural layers.

Date Last Printed: 9/26/06 Page 123 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

ArcIMS
Connector

WebSphere

HTTP Server

AIX Operating System

Web Browser

Oracle DBMS

MDR + DW
Databases

Client Tier

Presentation Tier

Business Tier

Integration Tier

Resource Tier

E
nh

an
ce

d
In

fr
as

tr
uc

tu
re

PlugIn AFF
Application

DB2 DBMS

Session
Database

ArcIMS

ArcSDE

Spatial
Databases

Figure - Architectural Layers and Components
Version - 1.2 Date - 2005-07-13

Concord eHeath

Red Alert TOPAZ

WebTrends

Oracle JDBCDB2 JDBC

JAI POI Xerceslog4j

AFFMON

Database
Monitor

Database
Watchdog

User Activity
Log Processing

Map Cleanup
Processing

IBM WebSphere Edge Server
Edge

Static
Java App

D
at

ab
as

e
S

ub
sy

st
em

M
ap

pi
ng

 S
ub

sy
st

em

Figure 76: AFF Technical and Infrastructure Components and Architectural Layers

5.4.3.1. Infrastructure Components
Infrastructure Components are the COTS software packages that provide the execution environment for
the AFF System.

5.4.3.1.1. Web Browser (User Agent)
The Web Browser, or User Agent, provides the user interface to AFF. This component is selected and
executed by end-users outside the control of DADS. The design and implementation of the AFF
presentation layer reflects the need to support multiple web browsers that change capabilities over time.

Common web browsers include:

• Microsoft Internet Explorer

• Netscape

• Mozilla Firefox

5.4.3.1.2. IBM WebSphere Edge Server
The WebSphere Edge Server COTS software provides load balancing between the legs of AFF and
redirects users to a Busy Server or an Unavailable Server based upon AFF availability as determined by
the Edge Server Custom Advisors (Edge). This best-of-breed component was selected for its tight

Date Last Printed: 9/26/06 Page 124 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

integration with the WebSphere software family. In older AFF documents, this component was sometimes
referred to as the Enterprise Network Dispatcher (eND).

 See http://www-306.ibm.com/software/webservers/edgeserver/ for information about this component.

5.4.3.1.3. IBM HTTP Server
The IBM HTTP Server COTS software is a web server that handles the Web Browser’s requests for AFF
content. Requests for static content are handled directly by the IBM HTTP Server; requests for dynamic
content are passed to the WebSphere Application Server for processing via the IBM HTTP Server
Plug-In. This best-of-breed component, based upon the industry standard Apache web server, was
selected for its tight integration with the WebSphere software family and because the product and IBM
support are included with the WebSphere Application Server.

 See http://www-306.ibm.com/software/webservers/httpservers/ for information about this component.

5.4.3.1.4. IBM HTTP Server Plug-In
The IBM HTTP Server Plug-In COTS software provides the routing and load balancing between an IBM
HTTP Server and WebSphere Application Server ‘s clones. This product is included with the
WebSphere Application Server.

 See http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg21160581 for information about this
component.

5.4.3.1.5. WebSphere Application Server
The WebSphere Application Server COTS software provides the Java 2 Platform, Enterprise Edition
(J2EE) used to execute the AFF Application. A WebSphere Application Server can have multiple
instances, known as clones. This robust, proven component was selected to replace the Oracle
Application Server when the Oracle solution proved to be inadequate early in the AFF development
process.

 See http://www-306.ibm.com/software/webservers/appserv/was/ for information about this
component.

5.4.3.1.5.1. J2EE Web Container
The J2EE Web Container component runs within the Java 2 Enterprise Edition (J2EE) and provides the
runtime environment for the JavaServer Pages (JSPs), Java Servlets, and Java Classes sub-components
that are the basis of the Java Application. This component is part of the WebSphere Application Server.

5.4.3.1.6. ESRI ArcIMS
The ESRI ArcIMS (Internet Mapping Server) component provides the mapping and geocoding services
for AFF. ArcIMS runs on the AIX Operating System as a stand-alone server and the Java Application
communicates with ArcIMS using the ESRI ArcIMS Java Connector. This component is from ESRI;
ESRI was key founder of, and the current leader in, GIS technology and ESRI products are used
extensively throughout the Census Bureau. ArcIMS was chosen due to ESRI’s proven record of
accomplishment in providing both the features and the support needed to build AFF’s mapping system.

 See http://www.esri.com/software/arcgis/arcims for information about this component.

5.4.3.1.7. ESRI ArcSDE
The ESRI ArcSDE (Spatial Database Server) component provides spatial data management for ArcIMS.
ArcSDE runs on the AIX Operating System as a stand-alone server and is the bridge between ArcIMS
and the Oracle Spatial Database. This component is from ESRI and was chosen based on analysis
done during the initial development of AFF; ArcSDE is also prerequisite for ArcIMS.

http://www-306.ibm.com/software/webservers/edgeserver/
http://www-306.ibm.com/software/webservers/httpservers/
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg21160581
http://www-306.ibm.com/software/webservers/appserv/was/
http://www.esri.com/software/arcgis/arcims

Date Last Printed: 9/26/06 Page 125 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 See http://www.esri.com/software/arcgis/arcsde for information about this component.

5.4.3.1.8. IBM DB2 Database
The IBM DB2 Database is used to store the data needed by the IBM WebSphere Application Server to
maintain user session information. This product is a perquisite for, and is provided by, the IBM
WebSphere Application Server.

 See http://www-306.ibm.com/software/data/db2/ for more information about this component.

5.4.3.1.9. Oracle Database Enterprise Edition
The Oracle Database Enterprise Edition is the database system used to store the application data used
by the AFF Application. Oracle Database Enterprise Edition offers industry-leading scalability and
reliability in clustered configurations. This product was selected for the following reasons:

• Standard at Census Bureau, existing site license lowers cost

• Standards-Based - support for the industry standard structure query language (SQL)

• Advanced Capabilities, including text search and large data bases.

• Scalability/Availability, see Oracle RAC below.

 See http://www.oracle.com/database/Enterprise_Edition.html for more information about this
component.

5.4.3.1.10. IBM AIX Operating System
The IBM AIX Operating System provides the base platform for AFF, including industrial strength UNIX
reliability, availability and security while offering flexible system administration. This component is a
prerequisite for using the advanced features of the server hardware selected for AFF, including features
such as IBM Virtual Shared Disk and Oracle Real Application Clusters.

 See http://www-1.ibm.com/servers/aix/ for information about this component.

5.4.3.1.10.1. SP Systems with Parallel System Support Programs (PSSP)
The AFF Servers are SP Systems that have five basic physical components:

• Frame – The containment unit (“the rack”) that physically house all other SP components.

• Nodes – IBM Power machines configured in a clustered environment. Nodes are Symmetric Multi-
Processor (SMP) computers with multiple CPUs.

• Switch – The internal network for high-speed communications between nodes.

• Switch Adapter – Physically connects each node to the switch network.

• Control Workstation (CW) – A stand-alone workstation used to monitor, configure and control an SP
System from a single point.

The PSSP software supports the partitioning of an SP System’s resources into one or more logical
clusters (operating environments).

5.4.3.1.10.2. IBM Virtual Shared Disk (VSD)
The IBM Virtual Shared Disk (VSD) software lets application programs that are running on different
nodes of a system partition access a raw logical volume as if it were local at each of the nodes. AFF uses
the IBM Recoverable Virtual Shared Disk and twin-tailed disks configuration, which allows a secondary node to
take over the server function from the primary node on failure.

http://www.esri.com/software/arcgis/arcsde/
http://www-306.ibm.com/software/data/db2/
http://www.oracle.com/database/Enterprise_Edition.html
http://www-1.ibm.com/servers/aix/

Date Last Printed: 9/26/06 Page 126 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure - VSD
Version - 1.2 Date - 2005-07-18

Node
1

Node
2

Node
3

Node
4

ESS

Twin Tailed
Connection

IP Network

Node
1

Node
2

ESS

Active Link

Inactive Link

Failed Link

All nodes access data via Node 1

All nodes access data via Node 2Failover to
Node 2

Node 1 Fails

Figure 77: VSD Example

5.4.3.1.10.3. Oracle Real Application Clusters (RAC)
Oracle Real Application Clusters (RAC) is a cluster database with a shared cache architecture that
uses IBM VSD to allow multiple Oracle database instances to access disks that are physically attached to
other nodes. Oracle RAC provides horizontal scalability for database access while easing data
maintenance tasks and lowering the database storage requirements (cost).

5.4.3.1.11. Sagent Package
The Sagent Package consists of a Library and Address Files; these components comprise the
geocoding subsystem used by AFF to convert street addresses into census block identifiers.

5.4.3.1.11.1. Sagent Library
The Sagent Library is a library of routines used by ArcIMS to provide geocoding address services to
AFF. The Sagent Library uses the Sagent Address File that provides the data for lookups, and the
value(s) returned by the library routines are customized for AFF purposes by a custom Sagent Geocoder
Plug-In (a DLL).

5.4.3.1.11.2. Sagent Address File
The Sagent Address File contains the address data necessary for the Sagent Library to geocode
addresses. Sagent regularly releases updates which must be tested and installed like any other AFF
component.

5.4.3.2. Technical Components
Technical Components are the customized software packages coded by DADS to implement the AFF
System.

Date Last Printed: 9/26/06 Page 127 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.4.3.2.1. Edge Server Custom Advisors (Edge)
The Edge Server Custom Advisors are custom code plug-ins to the IBM Edge Servers that run every
few seconds to monitor basic AFF component availability and performance in the production environment.
The results are used to balance traffic between the AFF legs.

There are two advisors, one for each major AFF subsystem:

• WebSphere Subsystem

• Mapping Subsystem

5.4.3.2.2. AFF Application
The AFF Application is customized code that implements the specific AFF functionality. There are two
major subcomponents:

• Web (Static) Content - fixed-content files, including HTML, JavaScript, CSS, and images that are
served by the IBM HTTP Server from files stored on the AIX file system.

• Java Application – JSPs, Java servlets, Java classes, and libraries coded to create the AFF-specific
dynamic content. The Java Application executes within the J2EE Web Container provided by the IBM
WebSphere Application Server.

The bulk of this design document is devoted to describing the AFF application.

The AFF Application is modeled on the Model-View-Controller (MVC) design; the MVC maps to the AFF
architectural tiers as shown in the following figure:

Client Tier

Presentation Tier

Business Tier

Integration Tier

Resource Tier E
nh

an
ce

d
In

fr
as

tr
uc

tu
re

Model
(Java Classes +

Resources)

View
(JSPs, Web

Content, Browser)
Controller

(Java Servlets &
Classes)

User

Figure - MVC and Layered Patterns
Version - 1.1 Date - 2005-07-15

Figure 78: MVC and Layered Patterns

5.4.3.2.3. Sagent Geocoder Plug-In
The Sagent Geocoder Plug-In is custom code, written in C++, that adapts the behavior of the Sagent
Library to meet the needs of AFF; in particular, to return a census block identifier. The Sagent Geocoder
Plug-In must be customized for each Sagent Address File release/year, so several versions (2000, 2002,
and 2004) of the plug-in may be installed and operational at the same time within the AFF System.

The Custom Legend Plug-In is used to generate map legends that meet AFF-specific requirements.

5.4.3.2.4. Databases
AFF uses a variety of databases to store facts, configuration, and logs. The significant databases
associated with the run-time environment are:

Date Last Printed: 9/26/06 Page 128 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Database Description

IBM DB2 Session Contains the user session data used by the AFF WebSphere Application Server
and the AFF Application. AFF uses the standard session database schema
supplied with the IBM WebSphere Application Server. Stored in a DB2 database.

English Metadata
Repository (EMDR)

A read-only database used to store the English language metadata used by the
AFF Application. Stored in an Oracle database.

Spanish Metadata
Repository (SMDR)

The Spanish language version of the EMDR. Stored in an Oracle database. The
EMDR/SMDR combination is known simply as the Metadata Repository (MDR).

Data Warehouse A read-only database containing the facts available to AFF and accessed using
queries defined by metadata found in the MDR. Stored in an Oracle database.

Spatial A read-only database containing the spatial data used by ArcIMS to create maps.
Stored in an Oracle database.

Custom Logs Contains the user activity statistics loaded nightly from flat file logs created by the
AFF Application. Stored in an Oracle database.

Feedback Contains the user feedbacks sent in by users from the Feedback link in the AFF
Application. Stored in an Oracle database.

Table 17: AFF Database Components

5.4.3.3. Maintenance Processing Components
The Maintenance Processing Components are custom scripts run as batch jobs on the AFF System to
perform operations associated with logging and the cleanup of resources.

Component Description

Map Cleanup
Processing

Invoked regularly to manage the map image cache by purging less frequently
used map images from the cache.

User Activity Log
Processing

Invoked regularly to process the flat file user activity logs generated by the each
WebSphere clone’s AFF Application. The batch job processes the log contents
into the user statistics database and then moves the log files to an archive.

Table 18: Maintenance Processing Components

5.4.3.4. Internal Monitoring Components
The Internal Monitoring Components are custom scripts run as batch jobs to monitor the status of the
AFF System and AFF Application from inside the BOC intranet.

Component Description

AFF Monitor
(AFFMON)

Monitors the production environment availability and performance periodically. An
alert is sent if availability or performance falls below a predefined threshold.

Database Monitor Perform a periodic sanity check of each database and sends alerts if the sanity
check fails.

Database
Watchdog

Checks the status of each database periodically and restarts a database if the
database fails to respond to a database ping request.

Table 19: Internal Monitoring Components

5.4.3.5. External Monitoring Components
The External Monitoring Components are COTS third-party software and services that monitor the
status of the AFF from outside the BOC intranet.

Date Last Printed: 9/26/06 Page 129 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Component Description

Concord eHealth Monitors and provides resource usage reports on the performance of the AIX
environments hosting the AFF production, review, and test systems. Concord
eHealth uses a small driver installed on the AIX systems to collect resource usage
but the reports are generated outside of the AFF systems. This component was
selected and made available by another organization. See
http://www.concord.com/ for information about this component.

Red Alert Runs multiple times per day to monitor the production environment availability and
sends alerts if AFF appears to be non-responsive. This component was selected
based on the features provided by the industry leader providing the service. See
http://www.redalert.com/ for information about this component.

TOPAZ Runs multiple times per day from multiple cities and networks across the United
States to monitor the production environment availability and performance from
outside the BOC intranet. This component was selected based on the features
provided by the industry leader providing the service. See
http://www.mercury.com/us/products/business-availability-center/ for information
about this component.

WebTrends Processes the AFF server log to create a series of reports that analyze AFF
activity. This component is provided by an industry leader in the analysis of web
logs, and it was determined to be a more cost effective solution than DADS
building an equivalent custom application. See http://www.webtrends.com/ for
information about this component.

Table 20: External Monitoring Components

Red Alert provides basic monitoring (pings) and TOPAZ provides application monitoring (servlet
requests).

5.4.3.6. Third-Party Components integrated into the AFF Application
To simplify and speed the design and implementation, the AFF Application uses the following third party
COTS and Open Source components to accomplish specific tasks.

Component Description

Apache Jakarta
POI

Used when creating download files in Microsoft Excel format (.xls). This industry
standard component was selected for its functionality. See
http://jakarta.apache.org/poi/.

Apache Logging
Services log4j

Used to log user activity statistics. This industry standard component was selected
for its functionality. See http://logging.apache.org/log4j.

Apache Xerces Used to read and write XML files. XML files are used within AFF for several
processes, including Save/Load Query. This industry standard component was
selected for its functionality. See http://xml.apache.org/#xerces.

ESRI ArcIMS
Java Connector

Used to communicate between the AFF Application and the ESRI Internet Mapping
Server (ArcIMS). This component is provided with ESRI ArcIMS.

IBM DB2 JDBC
Thin (Type 2)
Driver

Used by the IBM WebSphere Application Server and the AFF Application to
access the IBM DB2 Session Database. This component is provided with the IBM
WebSphere Application Server.

Oracle JDBC
Thin (Type 2)
Driver

Used by the AFF Application to access the Metadata Repositories and Data
Warehouses stored in Oracle databases. This component is provided with the
Oracle Database Enterprise Edition.

http://www.concord.com/
http://www.redalert.com/
http://www.mercury.com/us/products/business-availability-center/
http://www.webtrends.com/
http://jakarta.apache.org/poi/
http://logging.apache.org/log4j
http://xml.apache.org/#xerces

Date Last Printed: 9/26/06 Page 130 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Component Description

Sun Microsystems’
Java Advanced
Imaging (JAI)

Used to adjust and convert images during the PDF creation process. This industry
standard component was selected for its functionality. See
http://java.sun.com/products/java-media/jai/.

Table 21: Third-Party Components

5.5. Architectural Mechanisms
An architectural mechanism is a design or architectural approach used across architectural tiers (layers)
to solve an architectural problem. AFF uses architectural mechanisms to handle functional and non-
functional requirements (NFRs). Some of the significant architectural mechanisms in AFF are:

• Security Model

• Session Failover

• Exception Logging

• User Activity Logging

• Zero Footprint on Client Browsers

• Section 508 Compliance

• Bookmarking

• Thread Pooling

• Producer-Consumer for Faster UI Refresh

• Application-Level Caching

• Customer Advisors for WebSphere Edge Server

5.5.1. Security Model
AFF application is designed to provide a read-only access to data using pre-defined data products to
general public via its web-based interface. The data, once loaded into the system, cannot be modified
through the application. Consequently, AFF application does not have many of the traditional application
security requirements such as identification, authentication and authorization requirements. Presented
below are the aspects of the AFF application design related to security.

5.5.1.1. Identification, Authentication, Authorization and Intrusion Detection
Requirements

As stated above, AFF application due to its nature does not have requirements in these categories, and,
therefore, there is no impact on the application design.

5.5.1.2. Immunity Requirements
AFF application implementation is based on J2EE platform and follows the platform guidelines. The use
of the J2EE platform, non-use of Java applets and conformance to the platform guidelines ensure that
AFF satisfies immunity requirements:

• Dynamic web content is served by mapped AFF Servlets:

• AFF application executable code is stored under WEB-INF directory in the deployed application
and is not directly accessible to the users (see J2EE/Servlet specification).

• Application configuration file (web.xml) controls which servlets are accessible to the users.

http://java.sun.com/products/java-media/jai/

Date Last Printed: 9/26/06 Page 131 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Servlets execute within a Java Virtual Machine (JVM) of a Websphere Application Server instance
and rely on the security protections provided by the Java language, JVM and Websphere. In
particular, Java language features such as type safety, array bounds checking, and memory
allocation on the heap eliminate the possibility of a buffer overflow attack.

• Static web content is served by IBM HTTP Server, which is not part of AFF application.

• AFF application allows data upload to support its Save Query/Load Query and User Feedback
functionalities. Whenever such data upload occurs, the data is verified for validity. Any invalid data
submissions are rejected with an error message. Validated data is passed on to appropriate
application components for processing. These components, along with the Websphere instance the
components execute on, maintain the integrity of the application code by treating the uploaded data
as just plain data.

• Java applets are a major security risk because they execute on client’s machine and are vulnerable to
a number of attacks, if not coded with security in mind. Since AFF does not use applets this risk factor
is eliminated.

5.5.1.3. Integrity Requirements
AFF application does not use html frames on its result pages to eliminate the possibility of spoofing
attacks, where parts of the page content (selected frames) are replaced with attacker’s content.

5.5.1.4. Privacy Requirements
AFF application assumes that the data that it displays has already been validated by the data provider
organizations to be free from Census confidential data (Title 13 confidential data).

5.5.2. Session Failover
Please refer to High Level System Architecture document, sections 3.1.2.6-3.1.2.7, for an overview of
Session handling in AFF application.

As a reminder, AFF System contains two independent “legs”, fronted by IBM Edge Server. Each “leg”
contains an IBM HTTP Server with IBM HTTP Plug-in, a WebSphere cluster, consisting of multiple
clones, running on the same node as IBM HTTP Server, and AFF databases (Metadata, Data
Warehouse, Session, etc.).

AFF application uses standard J2EE/Servlet API (getSession() on HttpServletRequest interface) to get
access to the session information. To support session failover, no changes are required to the application
code. Session failover is configured on Websphere Application Servers that make up AFF system using
Administrative Console and/or configuration files. The only Session tracking mechanism that AFF
application supports is Cookies. For session failover, “Distributed Sessions” setting should be set to
“database”. This setting forces Websphere application server to serialize and store session attributes in
the specified database. Websphere provides additional configuration options to fine-tune this process.

To illustrate how session failover works, lets walk through a number of scenarios: Note: for simplicity’s
sake, the scenarios below assume that the following configuration settings are used:

• Write frequency: End of servlet service

• Write contents: All session attributes

This setting specifies that the session object should be serialized and saved to the session database at
the end of the servlet service() method call for each HTTP request that is associated with a session.

5.5.2.1. Normal Operation
1. Web client sends an HTTP request (request A) to the AFF web application. The request does not

contain a session identifier (the web client has not joined a session yet).

2. IBM Edge Server routes the request to one of the available AFF system “legs”, balancing the load
between them.

Date Last Printed: 9/26/06 Page 132 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

3. The IBM HTTP Plug-In in the IBM HTTP Server (also known as Work Load Manager, or WLM) of
selected AFF system “leg” routes the request to one of the available application server clones,
balancing the load among all clones of the cluster.

4. The selected application server clone passes the request to the AFF application, which executes
within application server’s web container.

5. AFF application calls request.getSession() method to obtain the session object from the web
container. The session object does not exist because the web client has not joined a session yet
(there is no session identifier), and a new session object is created and returned to the AFF
application. Once the session is created, the session ID and the clone ID (<Session ID>:<Clone ID>)
will be added to the browser’s session cookie. This allows the IBM HTTP Plug-In to route the
browser’s next request to the same clone.

6. AFF application populates the session object with the session data.

7. When the request processing is completed and AFF application returns control back to the web
container, the web container serializes the session object into a byte stream and saves this byte
steam to the session database (DB2). The session object is also retained in memory by the web
container.

8. The same web client sends another HTTP request (request B) to the AFF web application. The
request now contains a session identifier (the web client has joined a session).

9. IBM Edge Server routes the request to the application server that processed earlier request (request
A) based on the web client IP address (server affinity).

10. IBM HTTP Plug-In further routes the request to the application server clone that processed earlier
request (request A), based on clone identifier in the session cookie (session affinity).

11. Application server clone passes the request to the AFF application.

12. AFF application calls request.getSession() method to obtain the session object from the web
container. The session object is located in memory using request’s session identifier, and returned to
the AFF application.

13. AFF application uses/updates the data in the session object.

14. The session object is serialized, stored to the session database and retained in clone’s memory.

5.5.2.2. Failure of an Application Server Clone
Consider normal operation scenario. Suppose the application server clone that processed request A died
just before the system received request B. In that case scenario steps 10 onward will look differently:

10. IBM HTTP Plug-In further determines that the application server clone that processed earlier request
(request A) is down, and routes the request to one of the other available application server clones in
the cluster.

11. Application server clone passes the request to the AFF application.

12. AFF application calls request.getSession() method to obtain the session object from the web
container. The session object cannot be located in memory using request’s session identifier, and the
web container queries the session database. The serialized representation of the session object is
found in the session database, de-serialized into Java object form and returned to the AFF
application.

13. AFF application uses/updates the data in the session object.

14. The session object is serialized, stored to the session database and retained in clone’s memory. The
clone that processed request B becomes associated with the session identifier.

Date Last Printed: 9/26/06 Page 133 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.5.2.3. Failure of an Application Server Cluster
Consider normal operation scenario. Suppose the application server cluster that runs the clone that
processed request A died just before the system received request B. In that case scenario steps starting
with step 9 onward will be as follows:

9. IBM Edge Server determines that the cluster that processed earlier request (request A) is down and
routes the request to the other system “leg”.

10. IBM HTTP Plug-In routes the request to one of the available application server clones, balancing the
load among all clones of the server.

11. Application server clone passes the request to the AFF application.

12. AFF application calls request.getSession() method to obtain the session object from the web
container. The session object cannot be located in memory using request’s session identifier, and the
web container queries the session database. The serialized representation of the session object is
found in the session database, de-serialized into Java object form and returned to the AFF
application.

13. AFF application uses/updates the data in the session object.

14. The session object is serialized, stored to the session database and retained in clone’s memory. The
cluster and the clone that processed request B become associated with the web client IP address and
session identifier.

5.5.2.4. Failure of the Session Database
Consider normal operation scenario. Suppose the session database died just before the system received
request B. In this scenario the AFF administrator will have to:

13. Reconfigure both application server clusters in the AFF system to use the backup session database

14. Restart both application server clusters one after another so that they can establish a connection to
the backup session database.

15. The in-flight session information stored in the failed session database will be lost. The users will have
to restart their session by navigating to the main AFF page.

5.5.3. Exception Logging

5.5.3.1. Functional Description
AFF application infrastructure contains generic components for consistent system-wide Java exception
logging. These components are designed in such a way so that relevant exceptions are always logged,
even if the specific AFF functional components do not handle them.

5.5.3.2. Design Approach
All AFF servlet classes are subclassed from common abstract
gov.census.aff.controller.common.AFFServlet class. This class provides common services to
all AFF servlets. When an HTTP request arrives to the application server for servicing, it is dispatched by
the application server to doGet() method of the servlet mapped to the request URL. In AFF application,
doGet() method is implemented on AFFServlet class. This method sets up processing of the request
in the concrete subclass by calling processRequest() method within a try-catch block. This call gets
dispatched to the overridden implementation on the concrete servlet subclass (Template Method pattern).
At this point, concrete servlet subclass or other AFF components used in processing of the request may
handle exceptions on a case-by-case basis by delegating to an instance of
gov.census.aff.util.exceptionhandling.AFFExceptionHandler class, which logs the
exception details to the system log. If an exception escapes from processRequest() method on the
concrete servlet subclass, then the exception is handled in the try-catch block of the AFFServlet class.
The exception is either handled in a specific manner (usually by sending a redirect to a specific error

Date Last Printed: 9/26/06 Page 134 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

page, as described below), or generically by logging the exception details and forwarding to a generic
error page, /jsp/exception_en.jsp for English locale or /jsp/exception_es.jsp for Spanish
locale. To log exception details, AFFServlet delegates to an instance of
gov.census.aff.util.exceptionhandling.AFFUserExceptionHandler class.

When an exception is thrown, it is typically initialized with an error id from AFFExceptionManager. All
possible exception ids are enumerated on this class as string constants. The detailed description of the
exception is derived by querying the AFFExceptionCatalog.properties file using the exception id.

Here is the list of exceptions that are specifically handled in AFFServlet (with a redirect to the specific
error/info page, but without logging of the exception details to the system log):

5.5.3.2.1. gov.census.aff.controller.common.AFFSessionExpiredException
Thrown when HTTP session object is expected to exist but it does not (because the session has expired).
Redirected to /jsp/sessionTimedOut_en.jsp or /jsp/sessionTimedOut_es.jsp, these pages
display “session expired” message and offer the user to re-start from the Main page.

5.5.3.2.2. gov.census.aff.domain.common.AFFDataNotAvailableException
Thrown when a table is defined in MDR but the data cannot be retrieved from Data Warehouse.
Redirected to /jsp/table/NotAvailable.jsp which displays a page one of the following messages:
The table or map you're looking for is not available because: The source of the data is being updated.
Please try again later.
or
The table, map, or geography is not valid. Click Main or Search to find data in American FactFinder.

5.5.3.2.3. gov.census.aff.domain.table.savedQuery.AFFSavedQueryException
Thrown when SavedQueryServlet encounters an unrecoverable problem while processing an uploaded
user query or creating a downloadable user query
Redirected to /jsp/table/QueryError.jsp.

5.5.3.2.4. gov.census.aff.util.exceptionhandling.AFFGctMismatchException
Thrown when GCT box head and stub mismatch, -- The exception translates into an error page that
allows the user to recover by using 'Change Selections'
Redirected to /jsp/table/GCTError.jsp and displays a page with the following message:
The selected geographic format and table combination is not supported. Use breadcrumbs to make other
geographic format and/or table selections.

5.5.3.2.5. gov.census.aff.util.exceptionhandling.AFFPopUpBlockerException
Thrown when the session is cleared by (supposedly) popup blocker on the web client. The exception
handling code tries to recover the session cookie from a URL parameter and redirects to the same URL.
If the session is not available on the redirect, then a different exception is thrown
(AFFSessionExpiredException)
Redirected to the same URL, but with additional parameter/value pair: _redir=true

5.5.3.2.6. gov.census.aff.util.exceptionhandling.AFFRedirectException
Thrown when 2003 ACS bridging returns zero results. Redirect/Forward to the 2000 named servlet.
Redirected to the next servlet, which is configured via init params.

5.5.3.2.7. gov.census.cws.controller.navigation.CwsException
Thrown when a problem occurs in the CWS user interface.
Redirected to /jsp/cws/exception.jsp, an error page customized for the CWS user interface.

Date Last Printed: 9/26/06 Page 135 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.5.3.2.8. Exception logging
The exception details logged to the system log include:

• Exception stack trace

• HTTP request servlet path

• HTTP request submit method

• HTTP request parameter values

• HTTP Session attribute values

• HTTP Session size in bytes

5.5.3.3. Class Diagrams

AFFUserExceptionHandler

+ AFFUserExceptionHandler()
+ handleException()

(from exceptionhandling)

AFFServlet

+ doGet()
+ doGetOperations()
+ processRequest()

(from common)

<<Http_Servlet>> AFFExceptionHandler

+ AFFExceptionHandler()
+ handleException()
logException()

(from exceptionhandling)

#$handler

AFFExceptionLogger

+ AFFExceptionLogger()
+ run()
+ writeLog()

(from exceptionhandling)
<<calls>>

BasicFactsServlet

+ processRequest()

(f ro m ba si cFa cts)

or other concrete
AFF
servlet class

Figure 79: Classes participating in generic exception logging in AFF

The main classes used to handle and log exceptions are AFFExceptionHandler,
AFFUserExceptionHandler, and AFFExceptionLogger. AFFUserExceptionHandler differs from
AFFExceptionHandler in that in addition to logging exception details, the former class also instantiates
and returns a view adapter in its handleException() method implementation. AFFServlet
aggregates an instance of AFFUserExceptionHandler and uses the returned view adapter by passing
it to the error page (view) for rendering.

AFFExceptionHandler delegates to a static method AFFExceptionLogger.writeLog(), which
extracts the details from the exception and actually writes them to the system log file.

Date Last Printed: 9/26/06 Page 136 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.5.3.4. Sequence Diagrams

Infrastructure : AFFServlet : BasicFactsServlet :
AFFUserExcept ionHandler

 :
AFFExceptionLogger

doGet()

doGetOperations()

processRequest()

throws an
exception

handleExcept ion()

logException()

writeLog()

logs the details of
the except ion to
the system log

or instance of
other concrete AFF
servlet class

Figure 80: Sequence diagram illustrating generic exception logging in AFF

When an HTTP request arrives to the application server for servicing, it is dispatched by the application
server to doGet() method of the servlet mapped to the request URL. In AFF application, doGet()
method is implemented on AFFServlet class. This method sets up processing of the request in the
concrete subclass by calling processRequest() method within a try-catch block. This call gets
dispatched to the overridden implementation on the concrete servlet subclass (Template Method pattern).
If an exception escapes from processRequest() method on the concrete servlet subclass, then the
exception is handled in the try-catch block of the AFFServlet class. The exception is either handled in a
specific manner (usually by sending a redirect to a specific error page), or generically by logging the
exception details and forwarding to a generic error page. To log exception details, AFFServlet
delegates to an instance of
gov.census.aff.util.exceptionhandling.AFFUserExceptionHandler class, which further
delegates to AFFExceptionLogger.

5.5.4. User Activity Logging
The objective of the user activity logging system is to collect statistics on the usage of the American Fact
Finder web application and analyze the results offline. The user activity logging system is broken down
into two parts. In real-time, various user selections are logged in a pre-defined XML format and written to
a log file. On a nightly basis, the log files are parsed and the data is inserted into the user statistics
database.

The following diagram depicts at a high-level how the user activity logging subsystem works on the AFF
External environment.

Date Last Printed: 9/26/06 Page 137 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

AFF Clone 1

AFF Clone NN

AFF Clone 2

...

Log
file

writes log
records

writes log
records

writes log
records

Nightly
Batch

Program

reads log
records

reads log
records

reads log
records

User
Statistics
Database

Log
file

Log
file

 queries
Writes
log and

batch job
records

User
Statistics
Reports

Figure 81: User Activity Logging

AFF supports several ways to get to the same result page. For example, a user may follow the regular
AFF path of selecting a dataset, a table and then getting to the resulting table or map. Or alternatively, the
user can get to the same result page via advanced search, related items or a bookmark etc. Since the
objective of this function is to collect usage statistics, logging occurs only on the result pages, not at the
intermediate steps taken by the user to get to a particular result page.

The extent and detail of information that is collected by this function is dictated by certain business rules.
Furthermore, since the user can add, delete or alter selections at any point in time these rules also
specify the elements of user selections that must change in order for a new user request to be logged
again. For example, in the case of reference maps, a user can select a geo of interest and get an initial
map. From there on he can then zoom into or pan to a different area of the map. But the system only logs
the initial creation of the map and not any subsequent user modifications to the map unless the user
selects a different geography or changes the boundary grouping.

See section 5.6.14 User Activity Logging for a more detailed description of the user activity logging
subsystem.

5.5.5. Zero Footprint on Client Brower
The AFF web application provides a zero-footprint browser interface to also accommodate the segment of
users who do not want to install additional software on their personal computers. Only HTML and
JavaScript are sent to the client machine. No persistent cookies or plug-ins are required to gain full
access to all of the functionality offered.

The Simple AFF interface was designed to work without using any cookies at all. Because each request
specifies only one geography and table, all of the required selections can be sent in each request. The
SAFF interface gives access to the Population Finder, Fact Sheet, People, Housing and Business and
Governments pages.

For advanced functionality, a transient session cookie is set which will only exist in the client’s browser
memory. No information is ever written persistently to the client’s machine. Parameters for all of the
various selections made by a user in the current browser session are stored on the AFF server, thus
avoiding the need to pass parameters back and forth between the client and the server. The cookie is a
lightweight component that stores a unique key to retrieve these selections when a request is made. This
transient cookie is lost whenever the client’s browser is closed.

5.5.6. 508 Compliance
Section 508, passed in 1998, is an amendment to the Workforce Rehabilitation Act of 1973. Its primary
purpose is to provide access to and use of Federal executive agencies’ electronic and information
technology by individuals with disabilities.

A web site is considered to be in compliance with 508 standards if it meets paragraphs (a) through (p) of
Section 1194.22. The following is an excerpt of each paragraph and how AFF complies with each
standard.

Date Last Printed: 9/26/06 Page 138 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

(a). A text equivalent for every non-text element shall be provided (e.g., via “alt”, “longdesc”,
or in element content).

All meaningful non-text elements have text equivalents. For example,

defines the remove button on a selection page, with the appropriate “alt” attribute also defined.

(b). Equivalent alternatives for any multimedia presentation shall be synchronized with the
presentation.

AFF does not offer any multimedia content.

(c). Web pages shall be designed so that all information conveyed with color is also available
without color.

Colors are never used as the sole method for identifying screen elements or controls within AFF.

(d). Documents shall be organized without requiring an associated style sheet.

AFF utilizes external style sheets in order to format web pages in the manner desired. If a user
turns off style sheets or uses a browser that does not support style sheets, AFF is still accessible
to them.

(e). Redundant text links shall be provided for each active region of a server-side image map.

Server-side image maps are used to support geographic selection on a map. Alternative
selection methods are provided (by list, by place, by address). For Thematic Maps, which also
use server-side image maps, users can download the data to retrieve the necessary data values.
For Reference Maps, no text equivalents are provided.

(f). Client-side image maps shall be provided instead of server-side image maps except where
the regions cannot be defined with an available geometric shape.

In the “select a state using a map” link from the AFF main page, users are presented with a client-
side image map of the United States from which they can click on any state to retrieve its fact
sheet. Each state’s boundaries are defined using the <AREA> tag. For example:

<area alt="Maryland" shape="poly" coords="393,188,431,189,429,184,393,183"
href="/servlet/SAFFFacts?_event=Search&_state=04000US24&_lang=en&_ss
e=on" />

(g). Row and column headers shall be identified for data tables.

See (h) below.

(h). Markup shall be used to associate data cells for data tables that have two or more logical
levels of row or column headers.

AFF uses the “ID” and “Headers” attributes in table row and column definitions in order to identify
the headers and row stub each data cell belongs to. The Virtual Table Generator (VTG), based
on the specification file used to create the table, dynamically determines row and column
identification. Each data cell is mapped to its row stub and column header by their appropriate id.
If a column heading spans multiple columns, or if a row stub contains multiple logical levels, all of
the ids are recursively defined in the cell definition. This information is stored in the MDR, in
VIRTUAL_TABLE_CELL.TD_ID. For example:

Header definition:

Date Last Printed: 9/26/06 Page 139 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

<THEAD STYLE="display:table-header-group">
<TR>
 <TD CLASS="header" WIDTH="34%" ROWSPAN="2" id="C1" ALIGN="LEFT">
 <P STYLE="text-align:left;font-weight:bold;">Geographic area</P>
 </TD>
 <TD CLASS="header" WIDTH="12%" ROWSPAN="2" id="C2" ALIGN="RIGHT">
 <P STYLE="text-align:right;font-weight:bold;">Total
 population</P>
 </TD>
 <TD CLASS="header" WIDTH="18%" COLSPAN="2" id="C3" ALIGN="CENTER">
 <P STYLE="text-align:center;font-weight:bold;">

 18 years and over</P>
 </TD>
</TR>
<TR>
 <TD CLASS="header" WIDTH="10%" id="C6" ALIGN="RIGHT">
 <P STYLE="text-align:right;font-weight:bold;">
Number</P>
 </TD>
 <TD CLASS="header" WIDTH="8%" id="C7" ALIGN="RIGHT">
 <P STYLE="text-align:right;font-weight:bold;">
Percent</P>
 </TD>
</TR>
</THEAD>

Row definition:
<TR>
 <TD id="G1" ALIGN="LEFT">
 <P STYLE="font-size:8pt;text-align:left;">Alabama</P>
 </TD>
 <TD NOWRAP headers="C2 G1" ALIGN="RIGHT">
 <P STYLE="text-align:right;">4,447,100</P>
 </TD>
 <TD NOWRAP headers="C3 C6 G1" ALIGN="RIGHT">
 <P STYLE="text align:right;">3,323,678</P>
 </TD>
</TR>

(i). Frames shall be titled with text that facilitates identification and navigation.

HTML frames are not used in AFF.

(j). Pages shall be designed to avoid causing the screen to flicker with a frequency greater
than 2 Hz and lower than 55 Hz.

Flashing or flickering elements are not used in AFF.

(k). A text-only page, with equivalent information or functionality, shall be provided to make a
web site comply with the provisions of these standards, when compliance cannot be
accomplished in any other way.

A text-only page is not available for AFF because current functionality should be available to all
users.

(l). When pages utilize scripting languages to display content, or to create interface elements,
the information provided by the script shall be identified with functional text that can be
read by assistive technology.

AFF does contain JavaScript content that affects the content displayed to the user, however the
site includes equivalent text that is accessible to a screen reader.

Date Last Printed: 9/26/06 Page 140 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

(m). When a web page requires that an applet, plug-in or other application be present on the
client system to interpret page content, the page must provide a link to a plug-in or applet
that complies with (a) through (l).

AFF does not use any applets or other programmatic objects, such as Flash, Shockwave, or
RealAudio. AFF does contain links to PDF files; however, they are created and maintained by
other divisions in the Census Bureau.

(n). When electronic forms are designed to be completed on-line, the form shall allow people
using assistive technology to access the information, field elements, and functionality
required for completion and submission of the form, including all directions and cues.

The data sets selection page uses radio buttons in a non-standard way and the geographic
selection pages use the ‘onChange’ events to navigate the geographic hierarchy. “Jaws” is able
to navigate these pages.

(o). A method shall be provided that permits users to skip repetitive navigation links.

Pages with the main and left navigation bars include ‘skip navigation’ links, which direct the
browser to the main content well. For example:
<map name="smb" id="smb">
 <area alt="Skip Navigation Bar" coords="0,0,1,1" href="#startcontent" />
</map>

(p). When a timed response is required, the user shall be alerted and given sufficient time to
indicate more time is required.

AFF maintains session information about geography and table selections that expire after one
hour of inactivity. A ‘session expiration’ page is displayed when a user makes selections after
their session has timed out.

The above examples are some of the methods used by AFF to meet Section 508 compliance; it is not
intended to be an exhaustive list.

 For more information on the Section 508 standards, see Web-based Intranet and Internet Information
and Applications (1194.22) at http://www.access-board.gov/sec508/guide/1194.22.htm.

 For more information about the AFF implementation of Section 508 in AFF, see the R9.3 High-Level
Design - 508 Compliance document (I:\AFF\AFF Code Deployments\AFF Code Release
Generic\02 AFF Design\Archive\R9.3 High-Level Design - 508 Compliance.doc).

5.5.7. Bookmarking
In AFF, there is special functionality that allows for the generation of URLs that can be bookmarked by
users. The functionality allows for a request to be converted to a bookmarkable URL and the browser is
redirected to this new URL. The redirect is achieved in a manner transparent to the user: the browser’s
history does not show an intermediate page for the redirect, and pressing the back button on the browser
takes the user to the original requesting page, not the redirect. In this manner, the final result page is
displayed with the bookmarkable URL shown in the browser’s Address field, and can be bookmarked
using the browser’s Add to Favorites (IE) or Add Bookmark (Netscape) feature.

The bookmarkable URL is generated using all the name/value pairs present in the request and session.
These name/value pairs are added to the URL string. Each parameter on the URL is marked with a
special prefix character (‘-‘). The length of the URL is then measured and if within limits, the process is
deemed successful. This limit of the URL is specified in the system properties file. The maximum is
currently set to 2048 characters which the limitation of the HTTP query string.

Date Last Printed: 9/26/06 Page 141 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

If the length of the URL exceeds the URL length limit, an attempt is made to gracefully degrade the
amount of data present in the URL. This degradation process is specific to the application context, and
the process involves removing as many name/value pairs as possible from the URL but still allowing the
resulting page to be rendered correctly. A common strategy is to minimize the number of geography and
table selections while retaining as much data as is required to create the intended result page. Once the
selections have been minimized, the URL generation process is repeated.

5.5.7.1. Suppressing Session Expiration
Session expiration is suppressed for expired sessions under the following circumstances:

• A saved bookmark or deep link is invoked (_bm=y, _bm=d, _bm=n).

• The user interacts with a page showing a non-degraded URL (_bm=y, _bm=n) e.g. by clicking
next/previous table/geography on an expired result page.

Session expiration will continue to occur under these circumstances:

• The user interacts with a page showing a degraded URL (_bm=d) e.g. by clicking next/previous
table/geography on an expired result page.

• The user clicks to a different area of the web site (Main, Data Sets, etc.)

Upon session expiration, if the user hits the back button a sufficient number of times to show any
bookmark/deep-link URL (_bm=y, _bm=n, _bm=d) in the address bar and hits enter, session expiration is
suppressed, all data in the URL is saved to session, and the result page displayed.

When session expiration is suppressed, then only the data in the URL is placed into the users session
and all other session data is lost and cannot be recovered.

5.5.8. Thread Pooling
J2EE application servers provide a multi-threaded environment for servicing requests, but the default
behavior of some J2EE application server containers is to service each new request by creating a new
thread at run time. This threading model unnecessarily taxes system resources with the overhead of
repeatedly creating threads and using additional CPU and memory for each thread. Application servers
that do provide managed thread pooling as part of their server container, implement thread pooling in
non-standard ways because there is was no standard thread pool library in the Java API prior to JDK 1.5.
Relying on the application server’s built-in thread pool support opens up the risk that application code
might perform differently or not at all in different server environments. In order to ensure thread pool
support across application server platforms and enhance performance, AFF implements it’s own thread
pooling model to service WebSphere requests.

The AFF thread pool implementation provides a level of control over thread pooling that is not possible
using the application server’s thread pool. AFF thread pooling is designed to create separate thread
pools for different subsystems of the AFF application rather than servicing all requests from a common
thread pool. For example, in AFF advanced search requests can be serviced from an advanced search
thread pool, while table download requests can be serviced from a download thread pool. The advantage
of this more granular approach to thread pooling is that thread pooling can be selectively turned on for
those subsystems where it makes sense and can be tuned to increase the performance of a particular
subsystem, while isolating other subsystems from resource intensive activities. Most application servers
service all thread requests from a single pool and resource intensive areas of the application can
consume all the threads available in the pool; causing deteriorating performance in the application as a
whole.

AFF thread pools are configured and performance-tuned through parameters in
ThreadPoolProperties.properties as shown in Table 22 below. One notable exception to this
design is enabling a thread pool, which can be done through the properties file or in the application code
by calling the setPooling() method of the ThreadedSubsystem.

Date Last Printed: 9/26/06 Page 142 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Parameter Function
threadpool_enabled Enables a thread pool.
threadpool_min_size Number of threads to instantiate in the thread pool initially.
threadpool_max_size Maximum number of threads the pool can contain.
threadpool_indiv_limit Number of items that can be added to the queue for execution.
strict_indiv_limit A boolean value that controls whether or not the number of

items to be queued should be limited.
threadpool_remove_thread_threshold Number of threads or active objects that can be reached before

system tries to shut down threads.
threadpool_monitor_time_interval Number of milliseconds between calls to the Timer class to

write the name of the current thread pool to the console.
Table 22: Thread Pool Tuning Parameters

In AFF, a pool of worker threads is created by the ThreadPoolWrapper class and managed by the
ThreadPoolManager class. When a new request arrives, instead of creating a new thread to service it,
the request is queued by the thread pool wrapper by putting the request into a Vector that is a member
variable of ThreadPoolRequestList. The request is later dispatched to one of the available worker
threads. The wrapper uses the ThreadPoolRequestRunPolicy class as a mediator to add
requests to the ThreadPoolRequestList. The thread pool manager manages the number of active worker
threads based on available resources, adding new threads to the pool or freeing some worker threads in
response to the number of outstanding requests.

Figure 82 depicts the classes involved in AFF thread pooling. When the AFF application starts up, the
thread pool manager creates an array of ThreadedSubsystem objects for each subsystem listed in
ThreadPoolProperties.properties. The ThreadedSubsytem object is simply a logical container
to differentiate thread pools by subsystem class name. The AFF startup logic also creates an array of
ThreadPoolWrapper objects for each threaded subsystem. The ThreadPoolWrapper objects store
the thread pool tuning parameters defined in ThreadPoolProperties.properties; and using these
parameters the ThreadPoolWrapper instantiates a ThreadPool. The ThreadPool creates
ThreadPoolThread objects (threads). Each request for a thread is put into a ThreadPoolRequest
object and the ThreadPoolRequest object is subsequently added to the ThreadPoolRequestList
queue. When a ThreadPoolThread is run, it retrieves a single ThreadPoolRequest from the
ThreadPoolRequestList for the ThreadPool in the ThreadedSubsystem and runs the
IThreadRunnable in the request on the current thread. The ThreadPool locks the current thread until the
IThreadRunnable is finished, making other requests wait. If the number of requests

Date Last Printed: 9/26/06 Page 143 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Constructor creates
ThreadPoolThreads

ThreadPoolManager

createThreadPool()
createThreadPoolWrappers()

(from thread)

Thread
(f rom la ng)

ThreadPoolWrapper

createPool()

(from thread) ThreadedSubsystem
(from thread)

<<local>>

<<instantiates>>
<<instantiates>>

ThreadPoolRequest instance doesn't exist
unti l ThreadPoolManager passes an
IThreadPoolRunnable to ThreadPool where a
ThreadPoolRequest is created using
IThreadPoolRunnable.

ThreadPoolThread
(from ThreadPool)

<<inner c lass>>

ThreadPool

ThreadPool()

(from thread)

0..*

1

0..*

1

<<instantiates>>

ThreadPoolRequestRunPolicy

getThreadPoolRequestListList()

(from ThreadPool)

<<inner class>>

1

1

1

1

IThreadPoolRunnable

getName()

(from thread)

<<Interface>>

ThreadPoolRequest

getRunnable()

(from ThreadPool)

<<inner class>>

target
RunnableLimit

isLimitExceeded()

(from th re ad)

lock

ThreadPoolRequestList

addThreadPoolRequest()
getThreadPoolRequest()

(from ThreadPool)

<<inner class>>

Figure 82: AFF Thread Pooling Class Diagram

5.5.9. Producer-Consumer for Faster UI Refresh
The AFF application was built as a collection of components. These components interact by exchanging
data. In a data exchange, the component that generates the data is called the data producer and the
component that receives the data is called the data consumer. It is in general desirable to decouple the
producer of the data from the consumer of that data. This has several advantages. Design is simplified
because data consumers can be designed in isolation from their data producers. Design changes are
easier to implement because data consumers can be modified separately from their data producers. But
perhaps the most apparent advantage comes from the buffered communication between application
processes.

Obtaining results from database queries can be a time-consuming process. The user interface can start
to be rendered to provide rapid feedback while the construction and execution of the query, along with
formatting the returned results, are performed in a separate thread.

The Producer / Consumer Collaboration diagram below shows this pattern as it is used in AFF.

Date Last Printed: 9/26/06 Page 144 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Producer

Consumer

add(:Object)
elementAt(:int):Object
removeElementAt(:int)
size():int

java.util.Vector
Queue

1

1

Producer

add(:Object)
elementAt(:int):Object
removeElementAt(:int)
size():int

java.util.Vector
Queue

1

1

hasMoreElements():boolean
nextElement():Object

java.util.Enumeration
ProductEnumeration

1 .. *

1

1

Queue-produced-objects 6

Consume-queued-objects 6

1

One or more Producers (possibly executing in separate threads)
populate a ‘shared’ Vector with objects for later consumption.

The JAVA implementation of the Vector class is synchronized
(thread-safe). This allows for concurrent access to this shared
resource when the Producer and Consumer components are
executing in different threads.

The Consumer is usually a JSP for rendering HTML content or
an IFormatter for downloadable streams (ZIP, CSV, RTF, XLS).

The ProductEnumeration will coalesce all of the Queue (Vector)
objects into one Enumeration for processing by the Consumer.In

te
r T

hr
ea

d
C

om
m

un
ic

at
io

n

Figure 83: Producer / Consumer Collaboration

The gov.census.aff.util.productionManager package defines two implementations, the
SimpleManager and the SmartManager.

5.5.9.1. Simple Manager
The SimpleManager class sequentially invokes the produce method for each Iproducer; no additional
threads are created. This is best used when the information is already present and no database access
is required. The real benefit is that it provides for a consistent interface for the consumption of the data.
The same JSP file that renders tables from statistical data queried from the data warehouse is also used
to render preview tables where only the cached metadata is shown. This class also traps any exception
thrown and allows the producer to handle it.
Vector sharedVector = new Vector();
for(int i = 0; i < iProducers.length; i++) {
 try {
 iProducer.produce(sharedVector);
 } catch(Exception e) {
 iProducer.handleException(e,sharedVector);
 }
}
return sharedVector;

Date Last Printed: 9/26/06 Page 145 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

SimpleManager
(from productionManager)IProductionManager

+ getProducts()

(from productionManager)

<<Interface>>

MatrixTableBuilder

buildTablePreview()

(from matrixTable)

GCTShellTableBuilder

buildTablePreview()

(f rom shel lTable)
GRTShellTableBuilder

buildTablePreview()

(from shellTable)
QTShellTableBuilder

buildTablePreview()

(from shel lTable)

IProducer

+ handleException()
+ produce()

(from productionManager)

<<Interface>>

ShellTableBuilder
(from shellTable)

<<uses>>

Figure 84: SimpleManager Class Diagram

5.5.9.2. Smart Manager
The SmartManager class creates a RunnableProduction object for each IProducer it will maintain.
The RunnableProduction class requests an available thread from the thread pool and initiates the
production of data by invoking the IProducer produce method.

SmartManager

+ runRunnable()

(from productionManager)IProductionManager

+ getProducts()

(from productionManager)

<<Interface>>

SmartManagerGCTShellTable
(f rom shel lTab le)

SmartManagerGQRShellTable
(from shellTable)

SmartManagerIQRShellTable
(from shellTable)

SmartManagerQTShellTable
(from shellTable)

SmartManagerMatrixTable
(from matrixTable)

SmartManagerCustomTable
(f rom custom)

SmartManagerSummaryTable
(from summaryTable)

RunnableProduction

+ run()
getProductQueue()

(from productionManager)1..* <<instantiates>>

Figure 85: SmartManager Class Diagram

Similar to the SimpleManager, it is the RunnableProduction object that traps any exceptions
encountered in the production process and then allows the producer to handle these exceptions. The
ProductEnumeration class then coordinates the asynchronous production and consumption of the
data.

Date Last Printed: 9/26/06 Page 146 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

IThreadPoolRunnable
(from thread)

<<Interface>>
Runnable

+ run()

(from lang)

<<Interface>>ProductEnumeration

- _runnableCounter : int

+ hasMoreElements()
+ nextElement()

(from productionManager)
RunnableProduction

getProductQueue()

(from productionManager)-_runnableProductions[]

IProducer

+ handleException()
+ produce()

(from productionManager)

<<Interface>>

MatrixTableBuilder
(from matrixTable)

ShellTableBuilder
(from shel lTable)

GCTShellTableBuilder
(from shel lTable)

GQRShellTableBuilder
(from shel lTable)

GRTShellTableBuilder
(from shel lTable)

NPShellTableBuilder
(from shel lTable)

PQRShellTableBuilder
(from shel lTable)

QTShellTableBuilder
(from shel lTable)

SummaryTableBuilder
(from summaryTable)

GQRSection
(from GQRShellTableBuilder)

PQRSection
(from PQRShellTableBuilder)

IQRShellTableBuilder
(from shel lTable)

IQRSection
(from IQRShel lTableBui lder)

CustomTableBuilder
(from custom)

<<uses>>

Figure 86: RunnableProduction Class Diagram

Because the methods in ProductEnumeration will be called in a thread separate from which the
RunnableProduction is executing, the methods must block until either data is available or the
RunnableProduction thread has completed execution.

Date Last Printed: 9/26/06 Page 147 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

RunnableProduction
Vector.size()>0

RunnableProduction
isFinished()==true

Return next
element

exit

NO

NO

YES

YES

wait

5.5.9.2.1. Sequence Diagram

caller : SmartManager runnableProduction :
RunnableProduction

 : ThreadPoolManager : ProductEnumerationproducer :
IProducer

getProducts(name, producer[], locale)

RunnableProduction(producer, locale, name)

runRunnable(runnableProduction)

runRunnable(runnableProduction, threadSubsystemIndex)

run()

ProductEnumeration(runnableProduction[])

produce(vector, locale, type)

Each subsystem in AFF uses
a separate ThreadPool to better
manage resources. Heavy volume
in one will have minimal impact
on other areas of the application.

A RunnableProduction object is created for each producer. This object creates the shared
Vector that is passed to the IProducer.produce method as well as the ProductEnumeration.

5.5.10. Application-Level Caching

5.5.10.1. Functional Description
American Factfinder disseminates a vast amount of census data on millions of geographies across the
nation on hundreds of subjects. Although this number may seem overwhelming a closer look reveals that
a lot of this information is displayed to several users repeatedly. For example, a list of all datasets for
Decennial program is presented to the users as they navigate to the dataset selection page. Similarly,
subsequent to dataset selection, a list of all geographic summary levels supported by that dataset is
presented to the user in order to make a geography selection. This redisplay of this essentially same
information affords AFF an opportunity to cache this information instead of building it from scratch every
time a user visits one of these pages. It has been observed that caching of frequently requested
information greatly enhances user experience by reducing response times considerably. Therefore,
application level caching (also known as persistence) forms an important aspect of AFF’s design.

Date Last Printed: 9/26/06 Page 148 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.5.10.2. Design Approach
Conceptually, implementation of persistence infrastructure is very simple. All cached objects are
maintained using a Java Hashtable object. All potential cache candidate objects are identified using a
unique key, similar to a database primary key. When the application code tries to get a handle to an
object, its key is first looked up in the cache. If it is found in the cache then it is returned directly from this
cache, otherwise a request is issued to the database to create this object. This newly created object is
then stored in the cache for later reuse.

Abstract PersistentFactory class provides most of this functionality except creation of object when it
is not found in the cache. This detail is left to actual concrete implementations of this class. These classes
know the SQLs to issue in order to create an object. AFF application code calls getPersistent()
method on appropriate factory (implemented in the super class), passing in an instance of
PersistentKey class. The toStrings() method of this class returns the key to be used to look up an
object in cache. If the object can’t be found in the cache then the controls is delegated to
createObject() method of the current class.

Some keys can lead to collection of objects instead of just one object. For example, a list of all summary
levels supported by a dataset. AFF application code has to be aware of such situations and call
getPersistentSet() method on the factory instead getPersistent().

5.5.10.2.1. Cache Parameters
Various parameters can be set for each cache to control its behavior. These parameters are specified in
the PersistentFactoryProperties.properties file and are read at WebSphere startup time. A
separate set of parameters are required for each cache and their names are prefixed with the
implantation class name. Many of these parameters can be changed at runtime using cachetool.jsp
in the /jsp/nodeploy directory. Table 23 describes the various attributes that can be set for each
cache:

Property Name Function
_cache_enabled Whether cache is enabled or disabled
_remote_cache_enabled Whether remote cache is enabled or not
_cache_freezable Indicates if cache contents can be frozen or not
_cache_partial_flushable Indicates if cache contents can be flushed partially or not
_cache_flush_percentage Percentage to flush an individual cache during a partial flush
_max_cache_size Maximum entries allowed in cache
_cache_class_name Implementation class name of cache policy
_entry_hit_save_threshold Number of hits required before a key can be save to a key file
_create_time_duration_enabled Flag to indicate if creation time of an object should be tracked or not.
_remote_cache_urls URLs of remote cache files
Filepath_aix Location of keys file to load a cache at system startup

Table 23: Cache tuning parameters

5.5.10.2.2. Cache maintenance policies
IcacheMaintainableStrategy interface provides the basics of cache maintenance policies.
Currently AFF supports two policies that are implemented via CacheStatic and
CacheSortedAccessAge classes. CacheStatic class, as the name suggests, is a fixed size cache. It
keeps filling up until it has reached the maximum entry limit. All subsequent attempts to add an object in
this type of cache are simply discarded. CacheSortedAccessAge, on the other hand uses least recently
used algorithm to retire objects from cache once it has reached it maximum capacity. The exact policy to
be used by each cache is specified in the PersitentFactoryProperties. Properties file (see
section 5.5.10.2.1). Most AFF caches use the latter policy to manage themselves.

Date Last Printed: 9/26/06 Page 149 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.5.10.2.3. Loading/Saving of cache key and objects
Most caches are built on the fly as the system is used, although it is possible to preload a cache at the
system startup. This is achieved by creating a key file. When the system starts up it reads they keys from
this file and preloads the cache by issuing SQL commands to the database. Similarly, it is also possible to
write out the keys currently in a cache to an external file using JSP tool. Furthermore, it is also possible to
serialize the objects in the cache and to write them to an external file. This way the entire cache can be
externalized. The serialized file can later be used at system startup file to preload the cache instead of
going to a database to do this. The entities to be preloaded can be determined based on the potential of
their reuse. For example currently AFF uses one keys file and an associated serialized file to preload
PermanentGeographyCache. This file contains keys associated with all states and counties in the nation.

5.5.10.2.4. Practical considerations for setting optimal caching parameters
The following bullets outline some considerations when trying to figure out optimal setting for caches.
Although it may not be easy to figure out if a cache is configured right, system performance over a period
of time can give a fair indication if something is amiss.

• Cache size plays an important role in cache performance. Too small a size can lead to a high cache
turnover rate. Too large a size, on the other hand, can lead to inefficient lookup of keys in the cache.
In some cases key lookup performance can deteriorate to such an extent that creating a new object
each time may prove to be cheaper instead of caching it.

• Caching pays most dividends when the entries in it are reused constantly without getting aged out
unnecessarily. Therefore, when choosing a set of keys to be preloaded at system startup time, it is
important to select the ones that have highest potential of reuse. System logs and user statistics can
provide useful information about geographies and tables that are requested most frequently by AFF
users. These can the form the basis of defining an initial set of keys.

• The combined memory usage by all caches shouldn’t be so high as to lead to low memory conditions.

5.5.10.3. Class diagram
Figure 87 shows the classes involved in persistence framework used by AFF. PersistentFactory
class is central to this framework and wraps a IcacheMaintainableStrategy class. This class
implements the caching policy. All calls to a concrete implementation of a factor are made to
getPersistent or getPersistentSet method. All factories return an instance of a class that
implements Persistent interface.

Date Last Printed: 9/26/06 Page 150 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

PersistentFactory

createObject()
createObjects()
getPersistent()
getPersistentSet()

(from persistence)

ICacheMaintainableStrategy

freezeCacheSize()
getMaxSize()
saveCacheEntryKeyStrings()

(from persistence)

<<Interface>>

GeographyFactory
(from geography)

TreeIdGeographyFactory
(from geography)

PermanentGeographyFactory
(f ro m ge ography)

...and many
other
factories.

<<contains>>

CacheStatic
(from p ersistence)

CacheSortedAccessAge
(from persistence)

PersistentKey

getId()
setId()
toStrings()

<<Interface>>

PersistentSet
(from persistence)

Figure 87: Persistance Class Hierarchy

5.5.10.4. Sequence diagram
Figure 88 illustrates a typical interaction with a factory when AFF application tries to create an object. The
call to getPersistent method first checks to see if a previously created object exists in the cache. If it
does then no database interaction takes place and the object is returned directly from the cache.
Otherwise it is created by calling the createObject method and then returned to the caller. But before
returning it back to the caller it is stored in the cache so that all future requests for the same object can be
fulfilled from cache.

Date Last Printed: 9/26/06 Page 151 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 :
GeographyService

 :
GeographyKey

 :
GeographyFactory

 :
CacheSortedAccessAge

GeographyKey()

setId()

setContext()

setDatasetId()
getPersistentSet()

getPersistentFromCache()
get()

createObjects()

putPersistentInCache()
put()

Il lu st ra ti on of a t ypica l factory meth od
im pl em entat io n. ge tGe oLi stSumm aryLe vel s
me tho d cal le d b y Search ByList con trol lers to
g et the list of summ ary le vel s for a dataset .

If only one object is
expected,
getPersistent is called
instead.

If the object isn't found in
the cache, it is created
from database. If only one
object is expected,
createObject is called
instead.

Wraps a cache
implentation
policy.

Factory tri es to loo k
u p obj ect in l ocal
cach e.

Once the object is
created, put it in the
cache for later reuse
by others.

Figure 88: Object creation sequence diagram

5.5.11. Custom Advisor for WebSphere Edge Server

5.5.11.1. Description
The AFF system relies on the WebSphere Edge Server’s Network Dispatcher component to provide IP-
level-load balancing across multiple web servers. The Network Dispatcher dynamically monitors and
balances incoming HTTP requests to improve the Web site’s availability, scalability, and reliability. The
Network Dispatcher comes with a critical feature named advisor. Advisors, which can be customized, are
software agents that work within Network Dispatcher to provide information about the load and the
availability on a given server. The load value is used by the Network Manager in determining the amount
of new traffic that can be routed to a particular server. Periodically, the Network Dispatcher conducts an
advisor cycle, where it individually evaluates the status of all servers in its configuration.

For AFF application, there are two custom advisors, namely ADV_ckwas and ADV_ims53. The
ADV_chwas custom advisor is designed to work with Network Dispatcher’s Load Balancer base code to
determine the load on WebSphere application servers. The ADV_ims53 custom advisor is designed to
work with Network Dispatcher’s Load Balancer base code to determine the load on ARCIMS application
servers. The Load Balancer base code provides all necessary administrative services, including starting
and stopping an instance of the custom advisor, providing status and reports, recording history
information in a log file, and reporting advisor results to the manager component. Generally, when the
Load Balancer base code calls the AFF custom advisor, the following steps happen.

• The Load Balancer base code opens a connection with the server machine.

Date Last Printed: 9/26/06 Page 152 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• If the socket opens, the base code calls the specified advisor’s GetLoad function.

• The advisor’s GetLoad function performs the steps the user has defined for evaluating the server’s
status, including waiting for a response from the server. The function terminates execution when the
response is received.

• The Load Balancer base code closes the socket with the server and reports the load information to
the Network Dispatcher’s manager component. Depending on whether the custom advisor operates
in normal mode or in replace mode, the base code sometimes does additional calculations after the
GetLoad function.

Custom advisors can be operated in either normal or replace mode. In normal mode, the custom advisor
exchanges data with the server, and the Load Balancer base code calculates the load value based on the
response time. The base code then reports this load value to the manager. The custom advisor returns a
zero for success, or a negative one for an error. In replace mode, the base code does not perform any
timing measurements. The custom advisor code performs whatever operations are specified, based on
its unique requirements, and then returns an actual load number. The base code reports the load number,
unaltered, to the Network Dispatcher’s manager component. Note that, regardless of the operating
mode, a “-1” load value means the target server is not available. In this situation, the Network Dispatch
will route incoming requests to the remaining available servers.

5.5.11.2. Design Approach

5.5.11.2.1. ADV_ckwas Custom Advisor
The ADV_ckwas custom advisor, a stand-alone class, is designed to interact with the Load Balancer base
code in a replace mode. This custom advisor is to be used in conjunction with the NDAdvisor servlet,
which is hosted by the WebSphere application server. Below table lists all possible load values that can
be reported by this custom advisor. These load values reflect the latest status of the target WebSphere
application servers and associated backend databases.

Load Values Meaning Remark
100 Target WebSphere application servers and application

databases are in healthy state
Good condition

8000 Either target WebSphere application servers or application
databases are experiencing a higher-than-normal workload.

Slow Condition

-1 Either target WebSphere application servers and/or
application databases are not responsive

Dead condition. This
is a default value

Table 24: Load Values Reported by ADV_ckwas.

Whenever the Load Balancer base code calls ADV_ckwas custom advisor, the following steps happen.

• The Load Balancer base code opens a connection with the WebSphere machine.

• If the socket opens, the base code calls the specified advisor’s GetLoad function.

• The advisor’s GetLoad function will send a “/servlet/NDAdvisor” request to the target server and wait
for a response from the server. The function terminates execution when the response is received. In
the event of no response, a “-1” load value will be reported.

• On the target server end, upon invocation, the NDAdvisor servlet will report the overall load value for
the corresponding WebSphere node. Additional details on the overall load value are discussed in the
design of NDAdvisor servlet subsection.

• The Load Balancer base code closes the socket with the server and reports the load information to
the manager component.

Date Last Printed: 9/26/06 Page 153 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.5.11.2.2. NDAdvisor Servlet
As mentioned above, the NDAdvisor servlet is responsible for providing the ADV_ckwas custom advisor
the overall load value of the corresponding WebSphere node. This servlet runs as background thread.
Periodically, it wakes up and checks on the status of selected databases (i.e., Metadata Respository,
Data Warehouse, Session). For each database, it submits a predefined query and measures the
response time including database connection time. If the response time is within a predefined threshold
value, a “100” load value will be assigned to the target database. If the response time exceeds a
predefined threshold value, the load value for that database will be set to 8000. A “-1” value will be used
in the event of no response or database connection problem. The overall load value, which is reported to
ADV_ckwas custom advisor, is based on the worst load value recorded among target databases.
Therefore, the overall load value will be set to

• 100 (GOOD condition) if all of the target databases have 100 values.

• 8000 (SLOW condition) if any of the target databases has an 8000 value.

• -1 (DEAD condition) if any of the target databases has a -1 value.

5.5.11.2.3. ADV_ims53 Custom Advisor
The ADV_ims53 custom advisor, a stand-alone class, is designed to interact with the Load Balancer base
code in a normal mode. Whenever the Load Balancer base code calls ADV_ims53 custom advisor, the
following steps happen.

• The Load Balancer base code opens a connection with the target ARCIMS server machine.

• If the socket opens, the base code calls the specified custom advisor’s GetLoad function.

• The custom advisor will first check to see if there is a lock file. A lock file is used to indicate that the
ARCIMS server is being down for maintenance purpose. The lock file should be located in the /tmp
directory on the Network Dispatcher machine. Its file name should follow the convention
aff_ims_<IMS Server>.lock. If there is a lock file, a “–1” load value will be reported. If not, the custom
advisor will send a “Ping” request to the target server and wait for a response from the server. The
function terminates execution when the response is received. In the event of no response, a “-1” load
value will be reported.

• The Load Balancer base code closes the socket with the server, calculate the load value based on
the exchange time, and reports the load value to the manager component.

5.5.11.3. Special Requirements for Creating Custom Advisor

5.5.11.3.1. Advisor naming conventions
Custom advisor must be written in Java. Its file name must follow the convention ADV_<name>.java,
where name is the name you choose for your advisor. The complete name must start with the prefix
ADV_ in uppercase letters, and all subsequent characters must be lowercase letters.

5.5.11.3.2. Deployment Path
To run the custom advisor, the custom advisor class must be located within the subdirectory
<install_path>/lib/CustomAdvisors on the Network Dispatcher machine. The default location for
this directory is /opt/nd/servers/lib/CustomAdvisors.

5.5.12. Map Architectural Components
Maps such as reference maps, thematic maps form an important part of AFF application. This section
describes all the components, which work together to generate a map in response to a user’s request for
a map.

Date Last Printed: 9/26/06 Page 154 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.5.12.1. Flow of control diagram

Leg 1 Leg 2

IBM WebSphere

AFF Application

AFF Client (Browser)

Internet

IBM WebSphere

AFF Application

ArcIMS Application Server

Image
Server

Query
Server

Geocode
Server

ArcSDESagent
Address

Files

ArcIMS Application Server

Figure - Mapping Flow Request
Version - 1.2 Date - 2005-09-12

Oracle
Spatial

Database

Image
Server

Query
Server

Geocode
Server

ArcSDE Sagent
Address

Files

Oracle
Spatial

Database

WebSphere
Edge

Server

Map
Edge
Server

Figure 89: Mapping Request Flow

The above diagram shows how a request flows through several AFF components before it is processed
by ArcIMS. It starts with the user requesting a map. This request is intercepted by WebSphere edge
server and redirected to one of the WebSphere application servers. The application running within
WebSphere processes the request and generates an ArcAXL request that is directed to the map edge
server. The map edge server forwards this request to one of the ArcIMS application server. At this point
the application server interprets the requests and forwards it to one of the ArcIMS server processes. For
example, a request to generate a map is forwarded to Image server while a request to do a spatial query
is forwarded to Query server. Geocoding request is forwarded to Geocode server. These spatial servers
then either make queries to ArcSDE or to the Sagent address files. Finally all the spatial servers return an
appropriate response back, which is propagated right to the WebSphere application and eventually to the
user.

5.5.12.2. ArcIMS
ArcIMS product from ESRI is used by AFF for generation of all types of maps and all requests involving a
spatial query, e.g. figuring out the geography for which data should be displayed when a user does an
“identify” on a thematic map. At run time, ArcIMS consists of an application server process and one or
more of several other server processes of any given type. These other processes can be differentiated on
the basis of tasks they perform. ArcIMS comes standard with several types of servers e.g. Image Server,

Date Last Printed: 9/26/06 Page 155 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Query Server, Extract Server, Geocode Server etc. (collectively known as spatial servers) although AFF
uses only the former three. Each spatial server process can be tuned to run any number of threads at the
startup time. Figuring out the exact number of spatial server processes to set up of any particular type
and the number of threads running within each of these processes is largely governed by the number,
complexity and usage of AXLs (Please see section 5.5.12.2.1 for AXL files). It is important to note that all
requests to ArcIMS are directed to application server, a java process, which then forwards it to one of the
spatial servers, depending on the type of a request and returns the response back to the calling
application. In other words, the application never communicates directly with these spatial servers but
only through application server. Apart from all the processes mentioned above, there is one additional
process that runs in background called “monitor”. As the name suggests, this process keeps checking all
the server processes and notifies application server if any of these terminates abruptly so that it can be
restarted with as little impact on the application as possible. All ArcIMS server processes rely on ArcSDE
for any spatial data retrievals and queries (Please see section 5.5.12.3 for ArcSDE).

5.5.12.2.1. AXL Files
Each mapping request has to provide 2 major inputs to ArcIMS:

• “What to show” - List of layers to be shown on the map (e.g. state boundaries, roads, parks etc.).

• “How to show” – Rendering rules for a layer (e.g. if scale is 1:100 draw state boundaries as a red line
of 10pt. width).

The way AFF application works, it is possible for a user to specify “what to show” (layers can be turned
on/off using the boundary or feature menu option), but not “how it shows” (i.e. there is no way for an end
user to specify that a certain layer should be shown in a certain color). In other words, since a user has
no way of specifying the display properties, the display rules associated with each layer remain constant
with each request. Since these rules can be complex, it makes sense to externalize these rules and then
just refer to them with each new request. AXLs, also commonly known as map services, provide just such
a mechanism.

AXLs are XML based files that specify the “rules” used to draw a map. Although a complete discussion of
AXL files is out of the scope of this document, in simple terms these rules include what fonts, colors and
symbols to use, what layers to show or hide at certain scales and how, and in what order to display the
layers, etc. (For ArcIMS AXL documentation please see
I:\AFF\TeamSharedPad\GeoFocus\IMS\ArcIMS4\Docs\ArcXML_Guide\ArcXMLGuide.pdf).

ArcIMS can maintain multiple AXL files each representing a different set of “rules”. All these AXL files are
loaded at ArcIMS startup time and then only a reference to one particular AXL file is included with each
request. Since the AXL file is already parsed and loaded in memory, this significantly improves runtime
performance at the one time cost of time it takes to start ArcIMS. Although it is possible to run multiple
instances of Image Server processes, each AXL file or service is registered with one and only one of
these running Image Servers. This avoids duplication of a parsed AXL file by all running Image Server
processes. All requests referencing a given service file are then handled by the Image Server that
maintains the parsed representation of this service.

In AFF each view group radio button available on the boundaries page corresponds to one AXL file.
Currently there are close to one hundred AXL files that are in use by AFF. As stated earlier, all AXL files
are parsed and stored in memory by Image Server(s). Since AFF application uses such a large number of
AXL files loading all AXL files to a single server comes at the risk of making that process take lots of
memory. To mitigate this risk, AFF currently has several Image Server processes and all the AXL files are
distributed across them based on usage patterns observed over past several years.

5.5.12.2.2. Sample Request & AXL
The following XML code shows a very simple AXL file

Date Last Printed: 9/26/06 Page 156 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ARCXML SYSTEM "ArcXmlCensus.dtd">
<ARCXML version="1.1">
 <CONFIG>
 <ENVIRONMENT>
 <LOCALE country="US" language="en" variant=""/>
 <SEPARATORS cs="," ts=","/>
 </ENVIRONMENT>
 <MAP dynamic="true">
 <WORKSPACES>
 <SDEWORKSPACE name="SDE instance" server="server" instance="port:number"
 user="user" password="password"/>
 </WORKSPACES>
 <PROPERTIES>
 <BACKGROUND color="255,255,255"/>
 <MAPUNITS units="decimal_degrees"/>
 <LEGEND title=" " categoryfont="Arial Bold" categoryfontsize="12">
 <LEGENDCATEGORY name="cat1" label="Boundaries">
 <LEGENDLAYER id="State" label="State"/>
 </LEGENDCATEGORY>
 <LEGENDCATEGORY name="cat2" label="Features">
 <LEGENDLAYER id="Road" label="Major Road"/>
 </LEGENDCATEGORY>
 </LEGEND>
 </PROPERTIES>
 <LAYER name="STATE" id="State" type="featureclass">
 <DATASET name="DADS.State" type="line" workspace="SDE1"/>
 <GROUPRENDERER>
 <SCALEDEPENDENTRENDERER lower="1:325001" upper="1:360000000">
 <SIMPLERENDERER>
 <SIMPLELINESYMBOL color="0,0,0" width="1" transparency="1.0"
 antialiasing="false"/>
 </SIMPLERENDERER>
 </SCALEDEPENDENTRENDERER>
 </GROUPRENDERER>
 </LAYER>
 <LAYER name="ROAD" id="Road" type="featureclass">
 <DATASET name="DADS.Road" type="line" workspace="SDE1"/>
 <GROUPRENDERER>
 <SCALEDEPENDENTRENDERER lower="1:325001" upper="1:360000000">
 <SIMPLERENDERER>
 <SIMPLELINESYMBOL color="0,0,0" width="1" transparency="1.0"
 antialiasing="false"/>
 </SIMPLERENDERER>
 </SCALEDEPENDENTRENDERER>
 </GROUPRENDERER>
 </LAYER>
 </MAP>
 </CONFIG>
</ARCXML>

Figure 90: Sample AXL File

This sample AXL file starts with setting some environmental properties and then sets up the SDE
workspace, which tells it the location of ArcSDE server. The next section specifies the properties for
legend like what categories should it be divided into and what layers should fall under each category. The
final LAYER tags describe the actual rules for drawing these layers, like scales, transparency, widths etc.
The following request shows how this service can be used to create a map once it has been loaded to
one of the Image Server processes:

Date Last Printed: 9/26/06 Page 157 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

<?xml version="1.0" encoding="UTF-16" ?>
<ARCXML version="1.1">
 <REQUEST>
 <GET_IMAGE>
 <PROPERTIES>
 <ENVELOPE minx="-10938202.997732" maxx="8619494.051032"
 miny="-105822.061500" maxy="14349867.061500" reaspect="false"/>
 <OUTPUT name="map.gif" legendname="legend.gif" />
 <IMAGESIZE width="575" height="425" />
 <BACKGROUND color="204,255,255" />
 <LAYERLIST order="false" nodefault="true" >
 <LAYERDEF name="STATE" visible="true" />
 <LAYERDEF name="ROAD" visible="false" />
 </LAYERLIST>
 </PROPERTIES>
 </GET_IMAGE>
 </REQUEST>
</ARCXML>

Figure 91: Another Sample AXL File

This request first specifies the extent of that the generated map should encompass. Then it assigns the
names that ArcIMS should assign to the map and legend images. Finally within LAYERLIST tag is
specifies which layer should be turned on and off. For example in the above example the “STATE” layer
is being turned on while the “ROAD” layer is being turned off.

As the above example shows, this request specifies only the layers that must be displayed on the map
and none of the display properties, which are all externalized to preloaded AXL file. It should be noted
that the service file shown above is a very scaled down version of AXLs actually in use by AFF. AFF has
hundreds of layers each with a complex display rule. Therefore externalizing these properties significantly
reduces the time it takes to parse and process each request sent to ArcIMS.

5.5.12.2.3. Query Service and geocode service AXL files
Most of the discussion above has focused on AXL files that are used for rendering a map and therefore
get loaded to one of the Image Server processes. Besides these AXL files, AFF uses a few other special
type of AXL file.

Queryservice.axl file is used for the purpose of spatial queries rather than rendering maps. This file
contains a list of all the layers that can be queried by AFF application and is loaded to the Query Server
process.

geocodeservice.axl, geocodeservice2002.axl & geocodeservice2004.axl files are used for
the purpose of geocoding queries. These files are needed for nothing more than assigning a logical name
to a geocoding service for a given year. These service get loaded to separate Geocode Servers. Please
see section 5.5.12.4 for more details.

5.5.12.2.4. Custom Legend
Although most AFF requirements are met by standard ArcIMS distribution, there is one particular AFF
requirement that can’t be met by “off the shelf” ArcIMS product. AFF requires that the legend entry for a
layer should be grayed out whenever that layer is not displayed because it did not meet the scale test or
density test, although it has explicitly been turned on by the user. Supporting this requirement mandates a
custom piece of code for legend. This code is developed by ESRI at their facility because it uses certain
non-public ESRI API’s. With each new release of ArcIMS product, this legend library has to be ported to
the new SDK.

5.5.12.2.5. Custom Advisor
To provide a fail-safe environment to AFF application, the current external system uses edge server to
route all mapping requests to one of the two ArcIMS instances. This allows the application to be
transparent to the status of individual ArcIMS servers or their locations. Rather this responsibility is

Date Last Printed: 9/26/06 Page 158 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

delegated to edge server. Logically this configuration is very similar to the one used to route requests to
one of the WebSphere application servers. From an implementation point of view though, there is an
important difference between these two configurations. While for WebSphere the code that advices on
the health of WebSpheres resides within WebSphere itself (as a servlet, that is constantly invoked by
edge server using standard HTTP protocol), for ArcIMS this code is installed on the edge server itself
similar to a plug-in or an extension. The reason for this difference stems from the fact that being a custom
software, edge server has no knowledge of the protocol that could be used to determine the status of
ArcIMS. But to overcome such situations, edge server provides an interface that can be implemented to
report status of a custom piece of software, which is then used by edge server to determine the health of
that process. Map Custom Advisor is just one such class that implements this interface. Whenever asked
by edge server to report the status of ArcIMS, this class makes an application level ping to ArcIMS, simply
asking for its version number, and reports its status back to the edge server. Apart from pinging ArcIMS,
this class also looks for a lock file in a certain predefined directory and if that file is present, then it reports
the status as negative. This facilitates administration of ArcIMS to be done without taking it down by
simply creating this lock file and without impacting users at the same time due to ongoing administration.

5.5.12.2.6. ArcIMS Connector
ArcIMS connector is a vendor provided client side java library that is used by AFF application to
communicate with ArcIMS. It has to be available in the AFF application classpath for it to establish a
“handshake” with ArcIMS for any mapping requests. Since, mapping custom advisor also needs to
communicate to ArcIMS, as described in above section, this library also has to be included in edge
server’s classpath for the map advisor to find it at runtime.

5.5.12.3. ArcSDE
ArcSDE product from ESRI is a database engine that is used to perform spatial queries e.g. intersection
of features, extent of features etc. It provides a rich set of library for applications that want to perform
complex spatial analysis. In AFF parlance it acts as data access layer to ArcIMS. For example, if ArcIMS
requires the extent of a certain feature before it can draw a map, it sends request to SDE, which extracts
the information from its underlying RDBMS and returns it back to ArcIMS.

5.5.12.3.1. SDE Layers
At the heart of SDE is the concept of layers. A layer is a logical entity that is used to maintain coordinate
data for certain related physical features e.g. all the states in US. This coordinate data establishes the
exact location of a feature in space. Certain advanced application can also include a time dimension to
their coordinate system.

Physically, the actual coordinate data for a layer is stored in an underlying RDBMS table. In AFF this data
is stored in spatial Oracle database. Upon creation each layer is assigned a layer id. These layer ids can
be found by querying layers table under SDE schema. For each layer, besides a base table as described
above, SDE also maintains 2 auxiliary tables. These tables are used internally by SDE for indexing and to
support other spatial operations. These tables are named F<layer_id> and S<layer_id>.

SDE layers can be divided into 3 main categories:

Point layers: These layers only store one coordinate point per feature. Many layers in AFF are point
layers, e.g. parks, military installations etc. AFF uses special point layers for determining density to
optimize performance.

Line layers: These layer store line shaped features. These features inherently don’t have a shape
associated with them, e.g. roads, rivers, streams etc.

Polygon layers: These layers store the entire geometry of a feature, i.e. the shape representing that
feature. As can be inferred, the larger the number of coordinate points used to represent a feature the
truer it is to its real shape. AFF, stores most features in 3 degrees of detail. The exact layer to use for
querying is dependent on the scale. This is done to achieve better performance.

Since every layer is essentially a RDBMS table, it is possible to also store attribute data e.g. population,
area, income statistics etc. in the spatial database along with spatial data. In release 1, AFF did store

Date Last Printed: 9/26/06 Page 159 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

some attributes in the spatial database but AFF 2 does not store any attribute data in spatial layers. This
decision has been reached keeping in mind several factors:

Attribute data e.g. total population of a certain geography is used for both drawing maps and generating
tables. If spatial database were to keep all the attribute data as well, then the tables would have had to
use the spatial database as the source for all data. This was undesirable and provided significant
challenges in partitioning the application. The other option was to replicate the data in both data
warehouse as well spatial database but this provided another challenge of application maintainability.
Another complication that led to this decision was the fact that several tables in AFF use complex views.
Creating and maintaining these views in spatial database would have unnecessarily taxed the database.

One major disadvantage to this approach is that it makes AFF unable to fulfill some classic spatially
oriented questions like “Give me a list of all counties within a 20 mile radius of this point that have a
population greater than X”. At present, AFF does not have any requirements that need such queries. If
such a need arises in future then AFF application can be extended to fulfill such a request by merging
results from 2 different sources, spatial database for the spatial query and data warehouse for attribute
query.

5.5.12.3.2. Organization of SDE Layers in AFF
AFF uses SDE layers to store spatial data associated with census geographies. Each geography type
has one or more layers dedicated to it per year program combination. For example data for Decennial
2000 states is stored in the following tables

DEC2000_STATE_P0G0_A

DEC2000_STATE_P0G3_A

DEC2000_STATE_P0G6_A

DEC2000_STATE_P1G6_A

In general the following convention is used to name SDE layers
<PROGRAM_NAME><YEAR>_<SUMMARY_LEVEL_NAME>_P<PROJECTION_FLAG>G<DETAIL>_<LAYER_TYPE>

Figure 92: SDE Layer Naming Convention

Program name, year and summary level name placeholders are self-explanatory.

Projection flag has the values of 0 and 1 for unprojected and projected layers respectively.

Detail flag has values of 0, 3 & 6 indicating the detail of geographic coordinates in the decreasing order.
By that token, 0 is the most detailed layer and 6 is the least detailed.

Layer type flag has values of A, L and P indicating whether it is a polygon, line or point layer respectively.

Note: Some layers prior 2000 (e.g. 1990 decennial etc.) haven't been converted to use this naming
convention.

Finally some layers (e.g for PEP2001) are based on views instead of actual data tables as described
above. This is done in order to avoid duplication of data when the underlying spatial data is same. For the
purpose of application and SDE, it is transparent if the real spatial data is stored in a physical ORACLE
table or is just a view querying a different base data table. SDE assigns a layer id to this view just as if it
was a regular spatial table and also creates the auxiliary F and S tables.

5.5.12.4. Sagent
Sagent address files are used by AFF to support search by address method to select a geography of
interest. AFF uses different versions of these address files (currently 2000, 2002 and 2004) to support
address search for a given geographic vintage. These different address files are available to AFF as
ArcIMS services just like mapping services. Although it was possible to implement this infrastructure as a
separate process, the decision to wrap it within ArcIMS was chiefly governed by the fact that ArcIMS
already has a predefined API for geocoding requests. Also, ArcIMS sits behind edge server, therefore
proving fail over capability to the application. Implementing separate servers for address searches would

Date Last Printed: 9/26/06 Page 160 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

have meant either giving up this fail over capability or introducing another edge server and custom
advisor.

The following diagram depicts how different address files are encapsulated within ArcIMS process

Geocode Server process

Custom DLL

Sagent C Library

Sagent Address Files

ArcIMS Application Server

Figure - ArcIMS Sagent Interaction
Version - 1.1 Date - 2005-08-09

Figure 93: ArcIMS Sagent Interaction

The geocode server accepts geocoding requests from application server and passes it on a custom
dynamic link library. This C library acts like a go through between ArcIMS and Sagent. When it receives a
request it converts it to a format understood by Sagent and passes it on for the request to be fulfilled. On
the return path, it converts the response received by Sagent to XML, which is ultimately passed back to
the application. As this picture shows change to either ArcIMS or Sagent requires this library to be
changed. Also it differs between various years (e.g. 2000 and 2002) because the Sagent API is very
closely tied to address files.

5.5.12.4.1. Deployment of new Sagent files to AFF
From AFF’s perspective, new delivery of Sagent files may be made for primarily 2 reasons:

• An updated address file for a year/vintage that is currently supported by AFF. This may be due to bug
fixes on part of Sagent, updates to TIGER files or due to certain other reasons.

• Brand new address file delivery for a year that isn’t currently supported by AFF

5.5.12.4.1.1. Deploying updated address files from Sagent
Deployment of updated address files for a year that is already supported by AFF is a simple matter of
copying files from Sagent’s media to the appropriate directories and a restart of ArcIMS server. For details
about location of these files please see section 5.5.12.4.1.2.2.

5.5.12.4.1.2. Deployment of new address files from Sagent
New address files may need to be deployed when AFF is to support new years. This process comprises
of several steps:

5.5.12.4.1.2.1. Building a custom DLL

Geocoder DLL files are named as per the following convention:
AFFGeoCoder<year>.dll

Date Last Printed: 9/26/06 Page 161 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

e.g. AFFGeoCoder2002.dll (Except for 2000 which does not include the year suffix in its name).

All these libraries are in the ext directory found underneath ArcIMS install directory.

A new custom DLL is required if the Sagent’s C library has changed as a result of new address file. The
baselined code for 2000 and 2002 versions of this address file (for both ArcIMS 4.01 and ArcIMS 9.1) can
be found in Rational ClearCase. After making any changes to support new Sagent API, compiling and
linking, place the generated DLL in the appropriate directory. Name the DLL file as per above convention.

If the new Sagent file still uses the same API, then a new DLL can be created simply by copying the older
DLL based on the same API and giving it a new name as per above naming convention. For example, a
DLL to support address files for year 2004 can be created simply by copying AFFGeoCoder2002.dll and
naming it AFFGeoCoder2004.dll.

5.5.12.4.1.2.2. Copying Sagent address files

All Sagent address files are located in /geostan directory. A separate subdirectory exists for each year
of address files supported by AFF. Create a new subdirectory for the latest year which is being deployed
and copy the address file shipped with Sagent release to this directory.

5.5.12.4.1.2.3. Updating ArcIMS configuration files & defining new service

ArcIMS configuration mainly consists of creating a new .cfg file in the etc directory under ArcIMS install
directory. This configuration file specifies the name of the DLL, assigns a logical name to a Geocode
Server process and specifies the location of the address files (same as the location to which address files
were copied in the previous step). This can easily be done by copying a pre-existing .cfg file and
changing the appropriate settings as described above.

Finally a new AXL service has to be created which gives a logical name to this service that can be used
by the application to access this particular address file. Again, this can simply be done by copying a pre-
existing service file and giving it a new name.

5.5.12.4.1.2.4. ArcIMS restart

Finally, for this service to be visible to the application, ArcIMS has to be restarted.

5.6. Detailed Design for Architectural Significant Use Case
5.6.1. SAFF – Simple AFF

5.6.1.1. Functional Description
Simplified AFF (also known as SAFF), as the name suggests, is a simplified version of American
Factfinder targeted at novice users and surfers who want quick answers to their most common questions
about their home towns, zip codes, counties etc. Users can search for their geography of interest by
either doing a name search on places, zip codes etc. or by typing in their address. By default, users are
presented results from Decennial 2000 census and where available, they can compare these numbers to
the latest results from American Community Survey by clicking on the ACS tab. The idea for SAFF
evolved from a similar site that was developed for Congressional Affairs Office called Congressional Web
Site. SAFF, in its present form, contains 2 major categories of pages:

5.6.1.1.1. FactSheet
Provides “at a glance” overview of geography of interest in a tabular format. Presents frequently asked
numbers for general, social, economic and housing characteristics.

5.6.1.1.2. People, Housing and Business & Government Pages
As it is designed, AFF requires a user to select a dataset and a table of interest before presenting any
results. This group of SAFF pages eliminates this complex interaction by providing “canned” links to most
pertinent facts about common geographies. People pages provide deep links to other AFF products

Date Last Printed: 9/26/06 Page 162 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

related to population characteristics like quick tables, detailed tables, geographic comparison tables and
thematic maps. Similarly Housing pages provide deep links to other AFF products related to housing
characteristics and Business & Government provide links to other AFF products related to economic
surveys like geography quick reports, industry quick reports and thematic maps.

5.6.1.2. Place of component in functional view
SAFF is unique in that a user does not have to go through several sequential steps to get to a result.
SAFF pages implicitly select a dataset, a default geography and table for the user depending on whether
the user is on a Decennial tab, ACS tab or on the Business and Government page. The only choice a
user has is to change the default geography.

5.6.1.3. Design Approach

5.6.1.3.1. SAFF and CWS Metadata for factsheets
SAFF Factsheets have been designed to mimic AFF quick tables with each summary level represented
as a different virtual table. To support both Decennial and ACS factsheets, it was necessary that SAFF
maintained a separate dataset and an associated tree for each of the two programs. By the same token
CWS was also required to maintain two sets of metadata structures. As a result, for a long time AFF
metadata repository contained four functional datasets, one for each combination. This was driven by the
fact that SAFF and CWS factsheets differed in content. As more and more similarities emerged between
these two interfaces, it made sense that they be merged at the metadata level, while still maintaining a
different user interface. The only major divergence in terms of metadata that remained between the two
was the geographic coverage. While SAFF is required to support geographies down to the tract and
ZCTA level, CWS supports coverage only up to county level. Table 25 lists all the summary levels
supported by SAFF and CWS

Geography Summary Level SAFF CWS <gsl-code>
010 – United States X X 010

040 – State X X 040

050 – County X X 050

060 – County Subdivision X 060

160 – Place X 160

E60 – Economic Place X E60

140 – Tract X 140

500 – Congressional District X 500

860 – Zip Code Tabulation Area X 860

Table 25: Summary level coverage for SAFF and CWS

As is obvious from the table above, geographic coverage for SAFF is a superset of CWS coverage except
for Congressional Districts. This issue has been resolved by expanding the SAFF tree to also include
CDs and driving CWS using SAFF dataset and trees. The only potential problem this can present is that
Congressional Districts may be returned as a result of search in SAFF. But since SAFF code makes
certain assumptions about the summary levels it supports, merging the two is not a problem.

This approach is a trade-off between a common code base and reduced flexibility. The main benefit of
this approach is that it reduces the number of VTG specification files and the resulting maintenance. The
most significant limitation of this approach is that searches are always relative to the geographies defined
for Census 2000; if a geography is not found in Census 2000, then it cannot be found for other surveys in
other years; such as for ACS and PEP.

Date Last Printed: 9/26/06 Page 163 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.1.3.2. SAFF Geo Bridging
Census boundaries of a geographic entity can change from year to year. For example, a county can be
split into two or can have its limits redefined. This can lead to new geography Ids. Thus when comparing
two programs based on different years, it is necessary that a “bridge” be defined between 2 vintages. This
bridge should be able to unambiguously identify a geographic entity from a “source” bucket to a “target”
bucket. Theoretically it is possible to define a bridge between any 2 years but SAFF uses only a limited
number of bridges. One such bridge is the unidirectional bridge from Decennial 2000 to the current ACS
year. If a geographic entity can’t be bridged the ACS tab is not displayed. It should be noted that
geographic bridging from Decennial to ACS is a necessary but not a sufficient condition for ACS tab to be
present for a selected geography. Due to its limited coverage, ACS data is not released for all
geographies supported by Decennial. It is therefore possible that a geographic entity may bridge but may
not have any data for it. For example for year 2003 ACS had data for only 5 of 135 counties in Virginia.
ACS tab is also hidden in such cases where no data for the given year is available.

5.6.1.3.3. SAFF Search Scenarios
Design of SAFF is unique in that it spans 3 different datasets (Decennial 2000, Latest ACS year and Econ
2002) but presents a unified interface to the user. In other words, existence of 3 different datasets (and
their associated geo trees) from which data is pulled and displayed is transparent to the user. For
example, a user may search for certain geography on Decennial tab and then switch to ACS by clicking
on ACS tab or to B&G government page by clicking on Business and Government tab on the left
navigation panel. Table 26 presents the possible scenarios and how they can be invoked:

From/To DEC ACS ECON
DEC User performs a new search on DEC

tab.
User clicks on ACS tab.
Only possible if ACS tab
appears on page.

User clicks on B&G
page on left navigation
bar.

ACS User clicks on DEC tab.
or
User performs a new search on ACS
tab which does not find any hits and
user is redirected to Decennial tab.

User performs a new
search and finds a hit for
ACS.

User clicks on B&G
page on left navigation
bar.

ECON User clicks on FactSheet, People or
Housing link on the left navigation
bar.

Not possible. User performs a new
search on Business and
Government page.

Table 26: Possible search scenarios

5.6.1.3.3.1. Search against DEC 2000
The following pseudo code describes the steps application needs to take to search against DEC 2000
search for geography against 2000 Decennial tree
if (no geography matched search criteria) {
 display error message
}
else if (only one geography is found) then {
 bridge found geography against ACS tree to enable/disable ACS tab
 display results for found geography
}
else {
 display list of geographies that match search criteria
}

5.6.1.3.3.2. Search against latest ACS year available
Any search against ACS involves these steps:

Date Last Printed: 9/26/06 Page 164 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

search for geography against 2000 Decennial tree
if (no geography matched search criteria) {
 display error message
}
else {

bridge all found geographies against ACS tree
if (no geography bridged) {
 redirect user to decennial tab
}

 else if (only one geography bridged) {
 display results for found geography
 }
 else {
 display list of geographies that bridged
 }
}

5.6.1.3.3.3. Search against ECON 2002
Finally the steps involved in searching against ECON 2002 are:
search for geography against 2002 Econ tree
if (no geography matched search criteria) {

display error message
}
else if (only one geography is found) then {

display results for found geography
}
else {

display list of geographies that match search criteria
}

Date Last Printed: 9/26/06 Page 165 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 94 shows these steps in the form of a flow chart for ACS year 2003.

YEAR,
SEL_GEO_ID

DISPLAY PAGE
for Year, Geo &
breadcrumbs

Change geo
selection

CURRENT
YEAR = 2003?

Perform Geo
search for year=

2000

Bridge each one of
the geo results

Number of
results

Preserve old geo
selection

Prompts user to
pick a single geo

GEO_ID

Use enters new geo
search terms

Y (CURRENT YEAR = 2003)
Perform Geo

search for
respective year

Number of results =
0?

N

Preserve old geo
selection

Display pop up to
inform user to

update the search
term

Y

N (CURRENT YEAR <> 2003)

Display pop up to
inform users that
no results in 2003

(update search
term or use 2000)

Number of results

= 0
Prompts user to
pick a single geo

> 1

= 1

Change
year

selection

User clicks on new year tab

New year = 2003?

= 0

> 1

= 1

Build reversed
2003 to 2000 geo

mapping

YEAR = 2000?

Bridge geo to 2003

N

Y

Results
> 0

Display
2003 tab

Show “No
results”

message

Y
N

Y

A

N A

Old year =
2003 & new
year = 2000

Use 2003 to 2000
mapping

Y N

Bridge selected
geo to 2003

Figure - Geo Search Flow Chart
Version - 1.1 Date - 2005-06-01

Figure 94: Geo Search flow chart

Date Last Printed: 9/26/06 Page 166 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Most of the functionality of invoking a new search, bridging etc. is hidden from SAFF controllers. This
function is instead a part of SaffSearchContext class and its subclasses. Top level
SaffSearchContext class defines the top level search mechanisms like search by placename, search
by address etc. which is used for decennial 2000 searches. A specialization AcsSaffSearchContext
class extends this implementation by also bridging geographies after search has been done. These
contexts all implement a common interface ISaffSearchContext that shield the servlets from
knowing implementation details and are assigned to servlets during initialization. For more information on
exact context used by each servlet see section 5.6.1.4.

5.6.1.3.4. Organization of SAFF JSPs
All SAFF pages include certain common elements like banner, left navigation bar, geography search form
etc. All these common elements that appear on all pages are externalized as includable JSP fragments.
For instance banner is named as banner.jsp and search form is named search.jsp. All these
includable JSP fragments are located in /jsp/saff/inc directory.

The main content well of SAFF pages generally varies by summary level except for factsheets. SAFF
content JSPs follow the nomenclature below:

<page_type>_<gsl-code>, where <page_type> refers to the type of page e.g. people for People pages,
housing for Housing pages etc. and <gsl-code> is the summary level code of the geography for which
the page is to be used. So the people page for states would be named people_040.jsp. Further, all
these pages are stored in separate directories named after the program name. So all the decennial
program pages are stored under /jsp/saff/content/dec directory while the ACS program pages
are stored under /jsp/saff/content/acs directory. The exact page to be included is determined at
runtime by the SaffSelect servlet.

5.6.1.4. URL (named servlets) to Java servlet class mapping
Table 32 lists the names of critical init parameters and the role they play in application behavior. Not all of
these parameters are mandatory. Some of these parameters may be absent in which case the application
uses appropriate defaults.

Parameter Name Role
NEXT_SERVLET Name of the servlet to be invoked for other tab. Only applied to

Factsheet, People and Housing pages.
content_by_sum_level Indicates if the content is different depending on summary level. True for people,

housing, B&G pages. False for factsheets.

content_jsp_name Name of the content well jsp.

CONTEXT Application context.

SUB_CONTEXT Application sub context. Used to enable/disable searches when user switches
between Decennial and ACS tabs or between decennial and econ.

source_ds_name Dataset to be used as source for geo bridging.

target_ds_name Dataset to be used as target for geo bridging.

geo_ds_name Dataset to be used for highlighting selected tab.

geo_address_ds_name Dataset to be used to validate geographies for search by address.

jsp_name Name of the main jsp.

table_by_sum_level Indicates if the table name changes by summary level. True for factsheets. N/A for
others.

table_ds_name Dataset name to be used for creating factsheets. N/A for others.

table_name Virtual table name to be used for factsheets. Application appends the summary
level code in front of this name if the table name varies by summary level. N/A for
others.

Date Last Printed: 9/26/06 Page 167 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Parameter Name Role
SEARCH_MT Flag to turn multi threaded place name searches on or off.

SEARCH_MT_POOLED Flag to turn thread pooling on or off for place name search.

SEARCH_CONTEXT Fully qualified name of the search context class implementing
ISaffSearchContext interface.

Table 27: Critical init parameters used by application.

This section continues with the mapping of named SAFF servlets to their implementation servlet Java
classes. The mapping of named servlets to their respective implementation Java servlet classes, Java
Server Pages files and servlet init parameters are included in the web.xml deployment descriptor file.
Note that the possibility of attaching distinct init parameters to the same implementation servlet, giving it
in essence a different identity, is key to the extensive servlet class code reuse in SAFF. Similar approach
for initializing named servlets is also used for CWS. Refer to CWS section for exact parameters used for
Congressional Web Site.

SubContext
URI

(named servlet) [1]
Implementation
Servlet Class [2] Content well JSP name [3,4,5]

fph SAFFFacts SaffFacts <pgm>/fact_sheet_000.jsp
fph SAFFPeople SaffSelect <pgm>/people_<gsl-code>.jsp
fph SAFFHousing SaffSelect <pgm>/housing_<gsl-code>.jsp

bg SAFFBusiness govSaffSelect ecn/bus_gov_<gsl-code>.jsp
[1] All URIs are prefix by /servlet/ unless otherwise noted.

[2] All implementation servlet classes are in the gov.census.aff.controller.navigation package.

[3] All content well JSPs are in the /jsp/saff/content/ directory (prefix the name shown by this directory path).

[4] <pgm> is the program name or abbreviation, one of acs, dec, ecn or population.

[5] <gsl-code> is the geography summary level, one of: 000, 010, 040, 050, 060, 140, 160, or 860.
Table 28: Named servlets using gov.census.saff.controller.navigation.SaffSearchContext

SubContext
URI

(named servlet) [1]
Implementation
Servlet Class [2] Content well JSP name [3,4,5]

fph ACSSAFFFacts SaffFacts <pgm>/fact_sheet_000.jsp
fph ACSSAFFPeople SaffSelect <pgm>/people_<gsl-code>.jsp
fph ACSSAFFHousing SaffSelect <pgm>/housing_<gsl-code>.jsp

[1] All URIs are prefix by /servlet/ unless otherwise noted.

[2] All implementation servlet classes are in the gov.census.aff.controller.navigation package.

[3] All content well JSPs are in the /jsp/saff/content/ directory (prefix the name shown by this directory path).

[4] <pgm> is the program name or abbreviation, one of acs, dec, ecn or population.

[5] <gsl-code> is the geography summary level, one of: 000, 010, 040, 050, 060, 140, 160, or 860.
Table 29: Named servlets using gov.census.saff.controller.navigation.AcsSaffSearchContext

5.6.1.5. Class diagram
Figure 95 shows the class hierarchy of SAFF controllers as well as search contexts used by these
controllers. SAFFServlet provides most of the functionality of navigating through SAFF pages.
SaffFacts servlet provides functionality specific to factsheets whereas SaffSelect provides
functionality to include appropriate content JSPs. SaffSearchContext class provides bulk of the
functionality related to searching and implementing SAFF business rules. For example, this class knows
the default summary level to be chosen when user searches on an address. Subclasses of this class

Date Last Printed: 9/26/06 Page 168 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

extend the base functionality by providing specializations like geo bridging after a search has been done
by the superclass. Controller classes are shielded from the exact names of these classes by working with
the interface that all these classes implement. Exact search context implementation to be used by a
servlet is driven by init parameters during servlet initialization. CWS servlets also make extensive use of
functionality provided by SAFF servlets and search contexts. CWSSearchContext implements the
business rules specific to CWS but is otherwise similar to SaffServlet.

H S

AFFServlet

(from common)

SaffServlet
(from navigation)

ISaffInitNames
(f ro m na vigat io n)

<<Interface>>

SaffSelect
(from navigation)

ISaffSelectionNames
(from viewadapter)

<<Interface>>

SaffFacts
(from navigation)

H S

SaffSearchContex
t

(from navigation)

ISaffSearchContex t
(from navigation)

<<Interface>>

AcsSaffSearchContext
(from navigation)

<<instant iates>>

SaffViewAdapter
(from viewadapter)

GenericViewAdapter
(from common)

<<instantiates>>

CwsFacts
(from navigation)

CwsSelect
(from navig ation)

CwsSearchContext

AcsCwsSearchContext

Figure 95: SAFF class hierarchy

5.6.1.6. Sequence diagram
Figure 96 illustrates a typical search scenario for SAFF when a user initiates a search by place name.
SaffSearchContext class does the actual search and returns the results to the controller. If more than
one search hits are found a list of geographies is presented to the user. Otherwise, the results for the
geography found are presented to the user.

Date Last Printed: 9/26/06 Page 169 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

AFF Infrastructure
Services

 : SaffServlet :
SaffSearchContext

processRequest() getViewAdapter()

hydrateViewAdapterWithInitParams()

processGeoNavigation()

getServletContext()

setFldCounty ()
setFldCity()

setFldStateName()

setFldZip()

executeSearch() executeSearchByPlacename()

processPlaceNameSearch()

processPlaceNameSearchResults()

hydrateViewAdapterWithSearchResults()

parseContent()

This method executes
appropriate search
method.

Controllers actually
work with
ISaffSearchContext
interface. Concrete
implementation shown
here for i l lustrative
purposes.

Appropriate
im plem en tation
class of
Search Context
created using i nit
parameter valu e.

Figure 96: Saff Sequence Diagram

5.6.1.7. Data model
SAFF does not have any tables or entities that are specific to its functionality. SAFF relies on base AFF
tables for all of its metadata requirements. For more information on place name search, address search
see section 5.6.3 Geography Selection. For details on table creation, refer to section 5.6.5 Create a Table
(full example).

5.6.2. View Dataset Page

5.6.2.1. Functional Description
Within American FactFinder (AFF), data are organized into data sets. This function provides the user with
direct access to all data sets currently included in the AFF application. The data sets themselves are
grouped into ‘Program Areas’, which correspond to specific Census Bureau censuses and surveys. The
supported programs are as follows:

• Decennial Census - The decennial census is the only data gathering operation in the United States
that is mandated by the Constitution. The first census was taken in 1790 and it occurs every 10 years,
in the years ending in "0". American FactFinder contains data from the decennial censuses
conducted in 2000 and in 1990

• American Community Survey (ACS) - The American Community Survey contains questions similar
to those of the decennial census long form and the Census Bureau plans that it will replace the long
form in the 2010 census.

Date Last Printed: 9/26/06 Page 170 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Economic Censuses and Survey - Economic Programs are the Census Bureau's primary program
commitment during non- decennial census years. These programs cover virtually every sector of the
U.S. economy, feature unique industry and geographic statistics, and provide information that is
critical for understanding the Nation's changing economic structure and performance.

• Population Estimates and Projections - This program produces population numbers between
censuses. Estimates usually are for the past, while projections are estimates of the population for
future dates.

• Annual Economic Surveys - This program produces data for a number of annual economic
programs including the Annual Survey of Manufactures.

The data set selection path is intended for fairly experienced data users who are familiar with Census
Bureau products, terminology and data. From the data set selection page, the user can, for example:

• Create Quick Tables, Geographic Comparison Tables, and Detailed Tables for Population and
Housing data.

• View data sets, Industry Quick Reports, and Geographic Quick Reports for Economic data.

• Create Thematic Maps from Population and Housing data, and Economic data.

• Display Reference Maps.

5.6.2.2. Design Approach
Prior to reading this document, it’s probably a good idea to print out a screen shot of the Dataset Page
located at: http://factfinder.census.gov/servlet/DatasetMainPageServlet?_program=DEC&_lang=en&_ts=

To support the Dataset Page, Dataset objects are grouped in an object called a DatasetPage. The
Dataset Page contains all Datasets for the selected program (tab). For example, if the selected program
is Decennial, the DatasetPage will contain only Decennial datasets. Each Dataset has the information
required to render the Dataset Page (descriptions, survey year, supported paths etc.). Supported paths
(the popup when a dataset is selected) are determined by accessing various “has-a” methods in Dataset.
For example, if the dataset.hasDT () method returns true, the link for the Detail Table path is added to the
popup for that Dataset. This logic is repeated for all potential paths (Quick Tables, Custom Table, Industry
Quick Reports, Geography Quick Reports, Multi Year Profile etc.).

As with most domain objects built in American Fact Finder, the DatasetPage object is cached after its
initial build. This is a one-time occurrence and subsequent requests to the Datasets Page will use the
cached DatasetPage domain object.

The selected tab is determined by the _program URL parameter. If the program is null, the Decennial
Census tab is selected as the default. Two URL parameters drive the tab functionality as well as the
content of the page. For example, when _program = ‘DEC’, the decennial tab is selected as the default
and the first dataset is selected. In addition, all supported paths via a popup for the selected dataset are
also displayed. When an invalid program is determined, the Decennial tab is selected as the default. An
invalid program can occur when the page has been book marked and the program name has been
changed or is no longer supported.

The page content is driven by the _lang and _program URL parameters. One JSP is used to render the
Datasets page. All logic to support the display of the content of the Datasets Page is located in
SaffDataset.jsp or Datset.jsp depending on _lang with the exception of the economic tabs where
the page content is significantly different. In the case of economic data, the main JSP is still called, but
the code to render the screen is replaced via an include file with specialized JSP’s
(Datatset_econ.jsp or Dataset_EAS.jsp).

Storing information at the dataset level allows us to drive the content of the supported path popup.
Dataset methods identifying path support are added as needed when new functionality is required in
American Fact Finder.

Date Last Printed: 9/26/06 Page 171 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.2.3. Relevant Named Servlets & Initialization Parameters
One controller (DatasetMainPageServlet) is utilized throughout American Fact Finder to support the
Datasets Page. While DatasetMainPageServlet is still the main controller called throughout AFF, two
additional servlets were spawned (SaffDatasetMainPageServlet, DatasetMainPageServlet_ES) to support
the SAFF look-and-feel while maintaining the old look-and-feel for the Spanish view.

Table 30 contains the mappings of named servlets as well as implementation Java servlet classes, Java
Server Pages files and servlet init parameters.

Servlet Implementation Servlet Class [1] JSP
DatasetMainPageServlet DatasetMainPageServlet N/A
SaffDatasetMainPageServlet SaffDatasetMainPageServlet /jsp/dataset/SaffDataset.jsp

DatasetMainPageServlet_ES DatasetMainPageServlet_ES /jsp/dataset/Dataset.jsp

[1] All implementation servlet classes are in the gov.census.aff.controller.dataset package.

Table 31 contains the servlet init parameters. Note: Not all init parameters are presented in the table.
For a detailed description of all init parameters, refer to the web.xml deployment descriptor file.
Table 30: SAFF Dataset Page named servlets

Servlet Init Parameter = Value
SAFF_DATASET_SERVLET =
/servlet/SaffDatasetMainPageServlet

DatasetMainPageServlet

SPANISH_DATASET_SERVLET =
/servlet/DatasetMainPageServlet_ES

content_jsp = /jsp/dataset/SaffDataset.jsp

Left_bar_nav_index = 6

VIEW_NAME = gov.census.saff.viewadapter.SaffViewAdapter

METHOD_NAME = getAllDatasets

SaffDatasetMainPageServlet

SERVICE_NAME = gov.census.aff.service.dataset.
DatasetService

VIEW_NAME = gov.census.aff.viewAdapter.dataset.
DatasetMainPageViewAdapter

METHOD_NAME = getAllDatasets

DatasetMainPageServlet_ES

 SERVICE_NAME = gov.census.aff.service.dataset.
DatasetService

Table 31: SAFF Dataset Page named servlets initialization parametersClass Diagrams

The View Datasets Page follows a typical architecture in American Fact Finder. The controller controls
the building of all business objects, which are ultimately placed in the view adapter, packed as a Java
Bean attribute in the HTTPServletRequest object before the super class AFFServlet forwards the
request and response objects to the Java Server Page (JSP). The workhorse method in the controller is
processRequest(), which needs to be implemented by classes that extend AFFServlet. This
pattern is slightly different for SaffDataset, which implements the parseContent() abstract method. The
builder, shown in the class diagram, is responsible for building the business objects. In this case a
DatasetPage.

Prior to release 10.1, one controller was utilized throughout American Fact Finder; however, to support
Release R10.1, a new named servlet was added since the Spanish dataset page required the old look
and feel. To accommodate this requirement and make sure all links remained unbroken, the main
controller (DatasetMainPageServlet) was modified to forward to the appropriate named servlet based on
the _lang URL parameter. This approach will not break any links since the named servlet
(DatasetMainPageServlet) remained unchanged.

Date Last Printed: 9/26/06 Page 172 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

AFFServlet
(from common)

<<Http_Servle...

SaffDataset

SaffDatasetMainPageServlet

DatasetMainPageServlet
(f rom dataset)

DatasetMainPageServlet_ES

Entry point to datasets page. All links thoroughout
AFF point to this controller. Based on _lang, it
will forward to either SaffDatasetMainPageServlet
or DatasetMainPageServlet_ES.

DatasetServlet
(f rom dataset)

DatasetPageFactory
(f rom dataset)

SaffServlet
(f rom navigation)

+ parseContent()

MetadataKey
(f rom metadata2)

DatasetService
(f rom dataset)

_service

<uses>

<uses>

<creates>

Dataset
(f rom metadata2)

DatasetPageBuilder
(f rom dataset)

<uses>

DatasetPage
(f rom dataset)

<builds>

5.6.2.4. Sequence Diagrams
The following sequence diagrams summarize the main interactions among classes with the purpose of
building the Dataset Page. The Dataset Page uses service, factory, and builder layers; a pattern used
throughout American Fact Finder. Sequence diagrams are also provided showing the hydration of
methods needed to support the supported path popup as well as the creation of Program objects, which
are required to support the tab portion of the View Dataset Page.

5.6.2.4.1. Main Controller (DatasetMainPageServlet)
The main controller (DatasetMainPageServlet) forwards to the appropriate servlet based on the _lang
URL parameter. All links throughout American Fact Finder invoke this servlet.

Date Last Printed: 9/26/06 Page 173 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 : Infrastructure DatasetM ainPagerServlet :
AFFServlet

 : A ffLanguage

processRequest(re q, resp)

Locale locale := getLocale(req)

[l ocale. get Language() = "e n" || null] c al lPag eNam ed("Sa ff Dat ase tSe rvl et" , req, re sp)

[locale.getLanguage() = "es"] cal lPageNam ed("SpanishDatasetServlet", req, resp)

Figure 97: Sequence diagram for the DatasetMainPageServlet controller.

5.6.2.4.2. SaffDatasetMainPageServlet
Figure 2 shows the interactions that occur when the SaffDatasetMainPageServlet is invoked from
DatasetMainPageServlet.

Date Last Printed: 9/26/06 Page 174 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 : Saf f DatasetMainPageServ let : Inf rastructure : Aff Language req :
HttpServ letRequest

_serv ice :
DatasetServ ice

dd : Dataset v a :
DatasetMainPageViewAdapter

v iewAdapter :
Saf fViewAdapter

parseContent(req, params, v iewAdapter)

v alidateSession(req)

Dataset dd:= getDataset(s, page)

Program p := getCurrentProgram(programId, locale)

[program == 'ECN'} getSectorsForADataset(v a, req)

Locale locale := getLocale(req)

String program := getParameter("_program");

St ring dat aset : =getParamet er(IUserSession. TRANSI ENT_D ATASET_KEY)

DatasetPage page := getDatasetPage(locale)

St ring program := getSVY()

setProgram(program)

setAllPrograms(v)

setProgramDatasets(v)

setDataset(dataset)

setCurrentProgram(p)

setLocale(loca le)

put("DatasetMainPageViewAdapter", v a)

Figure 98: Sequence Diagram for the SaffDatasetMainPageServlet.

5.6.2.4.3. DatasetMainPageServlet_ES
Figure 3 shows the interactions when the DatasetMainPageServlet_ES is invoked from
DatasetMainPageServlet.

Date Last Printed: 9/26/06 Page 175 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 : Inf rastructure : DatasetMainPageServ let_ES : Af f Language :
HttpServ letRequest

_serv ice :
Datas etServ ice

dd : Dataset v a :
DatasetMainPageViewAdapter

processRequest(req, resp)

Locale locale := getLocale(req)

v alidateSession(req)

String program := getParameter("_program");

St ring dat aset : =get Paramet er (I Us erSes sion.TRANSI ENT_DATASET_KEY)

DatasetPage page := getDatasetPage(locale)

Dataset dd:= getDataset(s, page)

String program := getSVY()

DatasetMainPageViewAdatper v a := getViewAdapter()

setProgram(program)

setAl lProgram s(v)

setProgramDatasets(v)

setDataset(dataset)

Program p := getCurrentProgram(programId, locale)

setCurrentProgram(p)

setAttribute("VIEW_ADAPTER", v a)

setLocale(locale)

callPage(req, resp)

Figure 99: Sequence Diagram for the DatasetMainPageServlet_ES.

5.6.2.4.4. Creation of the DatasetPage.
Figure 4 shows the interactions from the service to builder layer to create the DatasetPage domain object.

Date Last Printed: 9/26/06 Page 176 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

_service :
DatasetService

key :
MetadataKey

DatasetPageFactory :
PersistentFactory

 :
DatasetPageBuilder

getDatasetPage(locale)

MetadataKey key :=MetadataKey()

setLocalelocale()

setId(key.DATASET_PAGE)

getDatasetPageInfo(localeIn)
getPersistent(key)

DatasetPage

 Figure 100: Sequence diagram showing the creation of a DatasetPage domain object.

5.6.2.4.5. Creation of Program objects.
Figure 5 shows the interactions required to create a Program domain object. Prior to building the
collection of Programs, a query is executed to acquire a list of all supported programs within American
Fact Finder. The returned list is then iterated thru to create Program domain objects. The disp_label
attribute in Program is then used by the JSP as the text content of a tab. Refer to section 3.1.6.2 for the
required SQL.

Date Last Printed: 9/26/06 Page 177 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 :
DatasetPageBuilder

key :
MetadataKey

 :
ProgramFactory

 :
ProgramBui lder

getData setPageInfo(local eIn)

getAllPrograms(locale)

setId(MetadataKey.ALL_PROGRAMS)

Vector all :=getPersistentSet(key)

getEachProgram(programId, localeIn)

setId(MetadatKe y.PROGRAM)

Program program := getPersistent(key)

g etAl lP ro gramIds(local eIn)

getProgram(id, localeIn)

<< start-loop all >>

<< end-loop all>>

Figure 101: Sequence diagram showing the creation of a Program domain objects.

5.6.2.4.6. Dataset methods used to populate the supported paths popup.
Figure 5 shows the hydration of attributes at the Dataset level. These attributes are later used in the JSP
via has-a methods to populate the supported paths for a dataset. Refer to section 3.1.6.3 for examples of
the SQL required to determine if a dataset supports a particular path.

Date Last Printed: 9/26/06 Page 178 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 : DatasetBui lder ds : Dat aset

getDataset(id, localeIn)

checkTableStatus(ds, datasetId, locale)

setDT(DatsetBuilder.checkDTStatus(datsetId,locale))

setQT(DatsetBuilder.checkQTStatus(datsetId,locale))

setGCT(DatsetBuilder.checkGCTStatus(datsetId,locale))

setTM(DatsetBuilder.checkTMStatus(datsetId,locale))

setADP(DatsetBui lder.checkADPStatus (datsetId, loca le))

setM YP(DatsetB ui lder.checkMYPSt atus(dat setId,loc ale))

setGRT(DatsetBuilder.checkGRTStatus(datsetId,locale))

[ds instanceof EconDataset] setGQR(DatsetBuilder.checkGQRStatus(datsetId,loc))

[ds instanceof EconDataset] setPQR(DatsetBuilder.checkPQRStatus(datsetId,loc))

[ds instanceof EconDataset] setIQR(DatsetBuilder.checkIQRStatus(datsetId,loc))

Figure 102: Sequence Diagram showing the hydration of attributes required to render the dataset supported path popup.

5.6.2.5. Data Model
The SQL required to support the View Dataset Page can be broken down to the UI elements of the page.
(Tabs, Dataset, supported paths etc.). The following section gives a brief example of the SQL necessary
to hydrate/fill/populate all UI elements as well as and ER Diagram.

Date Last Printed: 9/26/06 Page 179 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.2.5.1. Common metadata entities for the View Datasets Page.

Figure 103: Common metadata entities for the View Datasets Page

5.6.2.5.2. Tabs
Prior to building the collection of Programs, a query is executed to acquire a list of all supported programs
within American Fact Finder see Figure 7. The returned list in figure 7 is then iterated thru in Figure 8 to
create Program domain objects. The disp_label attribute in Program is then used by the JSP as the text
content of a tab.

Figures 7 show the SQL required to return a collection of supported programs. This collection is then
iterated thru creating Program domain objects.

Date Last Printed: 9/26/06 Page 180 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 select pr.prg_abbr, pr.prg_name, pr.ds_type
 from program pr
 order by disp_order

Figure 104: SQL used to retrieve a list of supported programs.

Figure 8 show the SQL required to create a Program domain object. The input for this SQL is the
collection returned in Figure 7.
 select prg_name, descr, disp_order,
 disp_label, ds_type, ftp_ind, ftp_label,
 SING_PRG_MDB_LABEL,
 SING_SV_MDB_LABEL, PLUR_SV_MDB_LABEL,
 SING_SVI_MDB_LABEL, PLUR_SVI_MDB_LABEL
 from program
 where prg_abbr = '?'

Figure 105: SQL used to create a Program. The disp_label is used as the text for the tabs in Dataset Page.

5.6.2.5.3. The supported path popup when a dataset is selected.
The Dataset object drives the popup showing the supported paths for a Dataset. When a dataset is
created, numerous methods are called identifying which path is supported for that dataset. These queries
are run separately in the DatasetBuilder and are used to set Boolean attributes in the Dataset object.
These methods are used in the JSP to create the supported path popup.

The following SQL is required to determine path availability per dataset. Specific examples are provided
for the Detail Table and Quick Table paths. Not every SQL is documented. For a comprehensive list of
all SQL, refer to gov.census.aff.doman.DatasetBuilder and look at the following canned queries:
CHECK_ADP_STATUS_SQL, CHECK_DT_STATUS_SQL, CHECK_GCT_STATUS_SQL,
CHECK_GQR_STATUS_SQL, CHECK_GRT_STATUS_SQL, CHECK_IQR_STATUS_SQL,
CHECK_MYP_STATUS_SQL, CHECK_PQR_STATUS_SQL, CHECK_QT_STATUS_SQL,
CHECK_TM_STATUS_SQL

5.6.2.5.3.1. Check for Detail Tables Support
select count(*) DT
 where ds.ds_name = ?
 and ds.ds_name = amc.ds_name and amc.amt_name = 'DS'
 and amc.amc_id = amk.amc_id and amk.avail_code = 'Y'
 and exists (
 select 1
 from matrix_table mt, aff_meta_central amc, aff_meta_control amk
 where mt.ds_name = ds.ds_name
 and mt.mt_name = amc.mt_name and amc.amt_name = 'MT'
 and amc.amc_id = amk.amc_id and amk.avail_code = 'Y'
)

Figure 106: SQL used to check for Detail Table support.

Date Last Printed: 9/26/06 Page 181 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.2.5.4. Check for Quick Tables Support
Select count (*) QT
 from dataset ds, aff_meta_central amc, aff_meta_control amk
 where ds.ds_name =?
 and ds.ds_name = amc.ds_name and amc.amt_name = 'DS'
 and amc.amc_id = amk.amc_id and amk.avail_code = 'Y'
 and exists (
 select 1
 from virtual_table vt,
 aff_meta_central amc, aff_meta_control amk
 where vt.ds_name = ds.ds_name
 and vt.vtty_code in ('DP','QT', 'VAR')
 and vt.vt_name = amc.vt_name and amc.amt_name = 'VT'
 and amc.amc_id = amk.amc_id and amk.avail_code = 'Y')

Figure 107: SQL used to check for Quick Table support.

5.6.3. Geography Selection

5.6.3.1. Description
All table and map selections in AFF need either an explicit, or an implicit geo selection. The following
user scenarios do not require an explicit geo selection because they use a default geography:

1. In AFF Search by keyword, a table or map product is selected and invoked with one or more default
geographies.

2. A Thematic Map or a Reference Map can be invoked without a geo selection. The code reverts to a
set of default map settings, including the US geography.

3. Deep links to result pages can be invoked with an indication for the default geo(s). Feature is useful
for data deployments on a roll basis, ensuring the link to the first available geo in the normally
established order.

4. Related items functionality relies on the current geography selection as a default when switching to a
different dataset.

Establishing the default geo selection is a function implemented by the geo module in the table create
component. It is based on the following rules, processed in order:

1. Look for default geo indication in GEO_TREE_DEFAULT_GEO by tree_id, then validate that the geo
exists in the dataset and/or context.

2. Look for “United States” geography and validate

3. Select the first state name in the disp_order

Example: For details, see class gov.census.aff.session.SessionManager.getDefaultGeoIds().

There is a canonical navigation path through AFF that starts on the dataset page, traverses the geo and
table or map select pages, optionally selects a race, ancestry, tribe for iterated datasets, and ends on the
table or map result page. When the user requests one of the dataset-based geo selection pages, two
mandatory selection elements must exist:

• Context (DT for detailed tables, QT for Quick Tables and Demographic Profiles, GCT for Geographic
Comparison Tables, TM for Thematic Maps, ADP for ACS Data Profiles, MYP for ACS Multi-Year
Profiles, etc)

• Dataset identifier (a.k.a. dataset name, following the name of the key column in the MDR). In the
case of Reference Maps (RM), the dataset identifier information is not mandatory but needs to be
replaced by a geographic bucket (or year vintage). If the dataset name information is present, it can
be used for deducing the vintage.

Date Last Printed: 9/26/06 Page 182 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

In addition to the canonical path, several alternate navigation paths are supported, including selecting a
table first, before the geo (as in the case when option “list all tables” is invoked off the dataset page), or
when there is a deep link to the result page and the user further navigates back to the geo select page to
modify the chosen geographies.

Without getting into details explained in the user session management section, user selections are
maintained on a functional context basis (DT, QT, etc.). Therefore, several sets of user geographic
selections can be maintained during AFF navigation. If for any given context, a dataset is changed, the
table selections are dropped, but the geo selections are re-validated against the new dataset, trying to
preserve as many as possible of the previous geo selections. This works particularly well when traversing
datasets from the same year or when the geo selections are high-level (US, states, counties, etc.)
because it’s likely the geo selection will exist in datasets from the same year or in different years if the
geography is at a high level. Geo selections are validated by checking to see if the selected geo codes
exist.

Another significant element of the geo selection functionality in AFF is the number of selections (i.e.,
single or multi) allowed in that context. This information is configured in the web descriptor section for
each named servlet. The main types of geo select methods, based on the allowed number of selected
geographies, are:

• Single geo select contexts – In the single geo select contexts, only one geo can be selected. The
restriction of selecting a single geography is imposed either by the design of the data product itself
(thematic and reference maps, GCT, GRT), or by the user interface of the result page (SAFF and
CWS fact sheets, ACS’ ADP, MYP, NP and Econ’s GQR).

• Multi geo select contexts – In the multi-geo select contexts, one or more geographies can be
selected. Two main reasons drove the business decision to allow multiple geo selections in some
contexts: (1) the need to compare geographies, side by side, based on their demographic, social,
housing, and economic characteristics; and (2) the need to download data for further processing. The
contexts that allow multiple geo selections are: DT, QT, and CT. The number of permissible geo
selections is configured by context in /properties/LimitCatalog.properties resource
bundle file.

• Hybrid – In the economic dataset selection interface, the geographic selections are used in two
ways:

1. As a criterion for finding a dataset. In this case, the context is FDS and is single geo select.

2. To build a query to filter rows within the selected dataset based on geo criteria. In this case, the
context is IBQ and multiple geo selection is allowed although the interpretation of geo selections
made by user is reversed. That is, if the user has not explicitly selected any geography, it is not
interpreted as “default” selection, but rather as “All” or unfiltered by geo.

This functional component combines two contexts, with well-defined single or multi-geo select
characteristics to achieve a hybrid way of geo selections. This is the only case that the same
navigation path allows crossing back and forth between two contexts.

The overall user experience can be significantly influenced by the performance of the geo select
functionality. Being one of the more challenging functions to build, performance issues have occurred in
the past, and several types of solutions have been devised to, either restrict the scope and severity of
problems, or to avoid them altogether. Classes of approaches to improve geo select performance
include:

• Database query tuning – In order to achieve an acceptable performance, this general approach is
used whenever it is anticipated that the Oracle RDBMS is going to be heavily stressed while
executing a query. It is mentioned here because of its importance given the complexity of some of
the AFF queries. It relies on indexing and heavily hinting the queries if found to help Oracle’s cost-
based optimizer. Wherever Oracle performance limitations were exposed, the queries were re-written
as work-around solutions. One such example is avoiding long in-list in SQL ”where” clauses and
breaking them into smaller “union” clauses.

Date Last Printed: 9/26/06 Page 183 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Example: For example, see static methods implemented in gov.census.aff.utils.SQLUtils
and their use in
gov.census.aff.domain.geography.GCTRowStubsByGgsBuilder.getRowStubByUnion(
) method.

• Permanent Caching – Some of the page elements are permanently cached. For this purpose, the
caching infrastructure has been extended to allow multiple configurations for the same cache types.
This is a significant design decision given that caches are based on singleton design patterns, which
means that only one instance of a given type exists. The concept of permanent caches has been
implemented and a permanent geography cache has been created. Cached object keys are stored to
disk allowing a full re-hydration of the cache with freshly instantiated objects through batch MDR
queries upon WebSphere restart. Actually, the time to hydrate the cache with fresh objects from the
MDR database is an indication of the health of the database and of the entire system, given that the
geo queries are some of the most complex ones formulated against the MDR. Alternatively, cache
objects can be serialized to disk and reloaded into memory upon WebSphere restart, allowing a quick
restart without stressing the database. This is useful for multi-clone restarts, allowing one clone to
share with all the others the serialized objects, and thus sparing the MDR database unnecessary
stress.

Example: gov.census.aff.domain.geography.PermanentGeographyFactory, and its
invocation from
gov.census.aff.service.search.GegraphyService.getGeoEntityList().

• Temporary Caching - Other elements on the page are less likely to be often selected. Assume the
scenario that the user selects a geographic type that requires several rounds of geographic drill
downs. The likelihood that another user selects the exact path for lower-level geographies is very
small. However, the likelihood that the same user will repeatedly return to the page to complete the
geo selection is very high. Without the temporary caching of the query result, every element on the
page will need to be re-fetched from the database upon every request to the page. With temporary
cache, only the newly-requested business object will need to be freshly built, and all the others will be
retrieved from the cache in minimal time. This alleviates the impact of the design decision to build the
page with multiple trips to the servers to avoid sending to the page potentially huge amounts of
unnecessary data. In the temporary cache, cached objects compete to remain in the cache with their
peers based on the frequency with which they are requested. If an object from the cache is
requested again, it is moved to the top of the cache. An object that is not often requested will
ultimately be aged out of the cache.

• Rule-based transfer of work from client side to server side – In multi-geo select interfaces, the
JavaScript string manipulations can become so costly that server-side operations become preferable.
Although this contradicts the general design goal of reducing the number of trips to back-end, it
reduces the totalcost, and also makes the cost consistent, given that the client machine capacity is
unknown and unpredictable.

Example: For more implementation details, see
gov.census.aff.controller.search.DDGeoSearchServlet.consolidateGeos().

• Peek-Ahead Caching – For certain database operations that are predictable, the database query is
posted asynchronously in a separate thread. When the results are needed, the request will be again
submitted, but the query result will be either already available in the cache or well into being fetched
from the database. This is mostly the case for large geo selections, when the processing is
transferred from the client side to the server.

Example: See the use of the following asynchronous geo call

((MultiGeoSessionManager)_stateMgr).asyncCreateGeos(params);

in the same method specified in the previous example.

• Other design or business decisions – Other design or business decisions contribute to
performance improvement of the geo select infrastructure. For example, in search by place name, if

Date Last Printed: 9/26/06 Page 184 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

the search domain can become very large, the previous drill-down selections narrow it down. Also,
Oracle Text search engine performs notably poorly for numeric search terms, which led to avoiding
such search terms in search by place name wherever possible, or narrow down the search to the
extent possible. Also, for a seemingly simple geo interface such as SAFF, the search tree contains
only the relevant geographies.

Five distinct methods of selecting geographies have been implemented in AFF:

• Geo select by list method – The geographies are selected by navigating a hierarchical geography
structure that prompts the user with meaningful selections in subsequent drop drowns. The
geographies offered for selection are peers under the same parent geography following a top-down
hierarchy. It is the fastest and most common method of selection, favored by users that have at least
a fairly good understanding of the Census geographies and of their planned geo targets.

• Geo select by place name method – This method of selecting geographies allows the user to enter
complete or partial name(s) of geographies and use Boolean operators for refining the results. The
geographies offered for selection are associated by similarity of name and otherwise have loose
hierarchical association. This method is a tool for users who know their geography by name, but have
less understating of the depth of Census geographies.

• Geo select by address method – This method of selecting geographies allows the user to enter an
address for retrieving the geographies. The geographies offered for selection form a bottom-up
hierarchy, stemming from the Census block identified to contain the entered address. This is a
common method of selections for users wanting to know more about the geographies associated with
an address, such as state, county, place, Census tract, block group, etc. Incidentally, users will not be
prompted for selection with a geographic type called “town”, but they will be prompted with types
suitable for the selected dataset and current context.

• Geo select by map method – This method of selection relies on geo spatial association of
geographies. It useful for users that need spatial orientation for selecting geographies (such as,
when the user would like to select the Census tracts in their area, and also the neighboring ones).

• Geo select by geo within geo method – This method of selection is similar to the “Geo select by
list” given that both are based on drill-downs. This is a powerful method of selection that allows the
user to select fully and partially nested geographies. Unlike the list method, this method allows looser
hierarchical relationships between the “parent” and “child” geographies. It is allowed to skip steps in
the hierarchy, or to configure relationships among non-nesting geographies. This method selects
only full geographies, even when they are not fully nested under the parent. Unlike this method, the
list method allows the selection of partial geos, fully nested under a parent geo, following a strictly
hierarchical navigational path.

All methods are data-driven, meaning that selections are only offered if there is data for them. Currently,
data-driving the geo selections has the following limitations:

1. All geographies offered for selection have data. However, some tables offered in the selection
process may not have data for all or some of the selected geos. This is the legacy selection
approach, where tables and geos are treated as orthogonal dimensions and offered for selection
independently of each other. With the implementation of ACS products, the trend has been to further
tighten the method for data-driving the geo selection process, also facilitated by a reduced and more
homogenous scope of tables.

2. The geo within geo selection method is not fully data-driven and may lead to empty selection lists.

3. Only checks selected geo, not geo’s contained within presentation, additional checking is needed for
contained geos.

5.6.3.2. Place of component in functional view
In the canonical selection path through AFF, the Select a geography page is between the Select a
dataset page on the canonical selection path. Variations from this navigation pattern are also possible.

Date Last Printed: 9/26/06 Page 185 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 108: Location of the geo select component in the canonical functional selection in AFF

5.6.3.3. Specification documentation
In addition to the customary specification documentation (functional specification, design base), the
Select a geography pages have been specified based on several other documents in:
I:\AFF\AFF Data Deployments\AFF Data Deploy Generic\08 Deliverables and Work
Products\GeoSpecs\

and in:
I:\AFF\TeamSharedPad\GeoFocus\Design Details\AFF 2\

5.6.3.4. URL (named servlets) to Java servlet class mapping
Five distinct methods of selecting geographies have been implemented in AFF. In general, each one of
the methods is dedicated a distinct implementation servlet class. Each one of the methods is used for
several contexts. The mapping of geo select method to contexts is driven primarily by business needs
and not limited technically. The two drivers that control the mapping of geo select methods to contexts
are:

1. The init parameters of each selection method servlet, including the primary one (by list) that controls
the access to all other methods, have a bit mask that enables or disables one or more method. This
is a global control by context.

2. In addition to the control described above, the geo tree associated with the dataset and/or the
function can enable or disable one or more of the geo selection methods.

Currently, all contexts must have the first method “Geo select by list”. If configured to appear on a
context, the second method “Geo select by place name” cannot be disabled on a geo tree basis. The
other three methods are fully configurable both by context and under MDR control. The control by
context is driven by a bit mask associated with an init parameter with name SELECTION_METHODS, which
encodes the possible combinations. Consequently, a bit mask equal to 31 selects all 5 methods in the
context, deferring the final control to the complementary selection methods by geo tree. A summary of
the controls is shown below in Table 32:

Control by Geo Select
Method by Context (named servlet, in web.xml) MDR object (META00 schema)

List Y (Mask Bit 0: +1) N/A
Name Y (Mask Bit 1: +2) N/A
Address Y (Mask Bit 3: +8) Exists at least one record with

GEO_TREE_GSL.ADDR_FIND_IND=’Y’
for selected dataset or functional tree

Map Y (Mask Bit 2: +4) Exists at least one record with
GEO_TREE_GSL.MAP_FIND_IND=’Y’

Select a
Program

Select a
Geography

Select
Tables

Select
Population

Groups
Result(s)Select a

Data Set

Figure - GS Subsystem
Version - 1.0 Date - 2005-01-25

Date Last Printed: 9/26/06 Page 186 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

for selected dataset or functional tree
Geo Within Geo Y (Mask Bit 4: +16) GEO_TREE.INTERACT_AVAL_CODE=’Y’

for selected dataset or functional tree
Table 32: Bit mask values and MDR conditions to enable/disable geo selection methods

This section continues with the mapping of named geo select servlets to their implementation servlet Java
classes, by context. The mapping of named servlets to their respective implementation Java servlet
classes, Java Server Pages files and servlet init parameters are included in the web.xml deployment
descriptor file. Please note that the possibility of attaching distinct init parameters to the same
implementation servlet, giving it in essence a different identity, is key to the extensive servlet class code
reuse in AFF.

5.6.3.4.1. Geo Select by List
All Geo Select by List URIs use the same Implementation Servlet Class:

gov.census.aff.controller.search.DDGeoSearchByListServlet

and the same JSP:

/jsp/GeoSelect/DDGeoSearchByList.jsp.

Table 33 shows the named servlets used for each context:

Context URI (named servlet)
ADP /servlet/ADPGeoSearchByListServlet

CT /servlet/CTGeoSearchByListServlet

DT /servlet/DTGeoSearchByListServlet

FDS /servlet/FDS_GeoSearchByListServlet

GCT /servlet/GCTGeoSearchByListServlet

GQR /servlet/GQRGeoSearchByListServlet

GRT N/A
IBQ /servlet/IBQGeoSearchByListServlet

MYP /servlet/MYPGeoSearchByListServlet

NP N/A
QT /servlet/DTGeoSearchByListServlet

TM /servlet/DTGeoSearchByListServlet

RM /servlet/DTGeoSearchByListServlet

Table 33: Named servlets used by the geo select by list method by context

5.6.3.4.2. Geo Select by Place Name
All Geo Select by Place Name URIs use the same Implementation Servlet Class:

gov.census.aff.controller.search.DDGeoSearchByPlaceServlet

and the same JSP:

/jsp/GeoSelect/DDGeoSearchByPlace.jsp.

Table 34 shows the named servlets used for each context:

Context URI (named servlet)
ADP /servlet/ADPGeoSearchByKeywordServlet

CT /servlet/CTGeoSearchByKeywordServlet

Date Last Printed: 9/26/06 Page 187 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Context URI (named servlet)
DT /servlet/DTGeoSearchByKeywordServlet

FDS /servlet/FDS_GeoSearchByKeywordServlet

GCT N/A
GQR /servlet/GQRGeoSearchByKeywordServlet

GRT N/A
IBQ /servlet/IBQGeoSearchByKeywordServlet

MYP /servlet/MYPGeoSearchByKeywordServlet

NP N/A
QT /servlet/QTGeoSearchByKeywordServlet

TM /servlet/TMGeoSearchByKeywordServlet

RM /servlet/RMGeoSearchByKeywordServlet

Table 34: Named servlets used by the geo select by place name method by context

5.6.3.4.3. Geo Select by Address
All Geo Select by Address URIs use the same Implementation Servlet Class:

gov.census.aff.controller.map.GeoAddressResultServlet

and the same JSP:
/sba/search_by_address_result.jsp

Table 35 shows the named servlets used for each context:

Context URI (named servlet)
ADP /servlet/ADPGeoAddressServlet

CT /servlet/CTGeoAddressServlet

DT /servlet/DTGeoAddressServlet

FDS N/A
GCT N/A
GQR N/A
GRT N/A
IBQ /servlet/IBQGeoAddressServlet

MYP /servlet/MYPGeoAddressServlet

NP N/A
QT /servlet/DTGeoAddressServlet

TM /servlet/TMGeoAddressServlet

RM /servlet/DTGeoAddressServlet

Table 35: Named servlets used by the geo select by address method by context

5.6.3.4.4. Geo Select by Map
All Geo Select by Map URIs use the same Implementation Servlet Class:

gov.census.aff.controller.map.SearchMapDrawServlet

and the same JSP:
/sm/searchmap.jsp

Date Last Printed: 9/26/06 Page 188 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Table 36 shows the named servlets used for each context:

Context URI (named servlet)
ADP /servlet/ADPSearchMapFramesetServlet

CT /servlet/CTSearchMapFramesetServlet

DT /servlet/DTSearchMapFramesetServlet

FDS N/A
GCT N/A
GQR /servlet/GQRSearchMapFramesetServlet

GRT N/A
IBQ NA
MYP /servlet/MYPSearchMapFramesetServlet

NP N/A
QT /servlet/QTSearchMapFramesetServlet

TM /servlet/TMSearchMapFramesetServlet

RM N/A
Table 36: Named servlets used by the geo select by map method by context

5.6.3.4.5. Geo Select by Geo within Geo
All Geo Select by Geo within Geo URIs use the same Implementation Servlet Class:

gov.census.aff.controller.search.DDGeoInGeoListSearchServlet

and the same JSP:

/jsp/GeoSelect/DDGeoSearchByRelationship.jsp

Table 37 shows the named servlets used for each context:

Context URI (named servlet)
ADP N/A
CT /servlet/CTGeoSearchByRelationshipServlet

DT /servlet/DTGeoSearchByRelationshipServlet

FDS N/A
GCT N/A
GQR N/A
GRT N/A
IBQ /servlet/IBQGeoSearchByRelationshipServlet

MYP N/A
NP N/A
QT /servlet/QTGeoSearchByRelationshipServlet

TM N/A
RM N/A

Table 37: Named servlets used by geo select geo within geo select method by context

Date Last Printed: 9/26/06 Page 189 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.3.4.6. Multiple Geography Selection
Multiple geography selection support is based upon the context, not the selection method. Table 38
shows which contexts support multiple geography selection.

Context Multi Geo Support
ADP N
CT Y
DT Y
FDS N
GCT N
GQR N
GRT N
IBQ Y
MYP N
NP N
QT Y
TM N
RM N

Table 38: Multiple geography selection support by context

5.6.3.5. Class re-use and cooperation in geo select
There is a clear separation between geo select by list, place name and geo within geo, on one side, and
by address and map, on the other side, with respect to implementation, packaging and code reuse. This
separation is anchored in the need for the latter to rely on ESRI’s ArcIMS architecture, whereas the
former is entirely custom code. However, there are synergies among the five methods of geo selection
that are captured in the class diagram shown in Figure 109.

Date Last Printed: 9/26/06 Page 190 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

DDGeoSearchServlet
(f rom search)

DDGeoServlet
(f rom search)

GeoSearchServlet
(f rom search)

GeoNut
(from search)

AFFServlet
(from common)

H S

MapDrawServlet
(from map)

MapServlet
(from map)

AFFParameters
(from common)

1

DDGeoInGeoListSearchServlet
(from search)

11

DDGeoSearchByPlaceServlet
(from search)

11

DDGeoSearchByListServlet
(f rom search)

11

SearchMapDrawServlet
(from map)

GeoAddressServlet
(from map)

GeoAddressResultServlet
(f ro m map)

11

GeographyService
(from search)

GeographyFactory
(from geography)

-$_factory

GeographyBuilder
(from geography)

Figure 109: Class diagram showing the synergies among classes implementing the five geography selection methods.

5.6.3.6. Key data model components for geo select

5.6.3.6.1. Common metadata entities for geographic selection
Various methods of geo selection rely on various metadata components to fulfill the data-driven
functionality. However, a few data model components distinguish themselves as key to the underlying
geo select design. Figure 110 is a simplified view of these key entities. Please note that not all entities
and not all attributes are shown in this figure.

Date Last Printed: 9/26/06 Page 191 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

GEO_TREE
TREE_ID
NAME
BUCKET_ID (FK)
LIST_ALL_CHECK_BOX_IND
INTERACT_AVAIL_CODE
GTN_REFRSH_DATETIME

GEO_TREENODE
TREENODE_ID
TREE_ID (FK)
GSL_CODE (FK)
BUCKET_ID (FK)
GEO_ID (FK)
NODE_TYPE
DISP_ORDER
NAME
NODE_LEVEL
PARENT_TREENODE_ID (FK)
ROOT_NODE_IND
PATH_NAME
DISP_LABEL
INS_DATETIME
UPD_DATETIME

GEO_BUCKET
BUCKET_ID
SVY_ABBR
GEO_YEAR
DISP_LABEL
DISP_ORDER
ADDR_AVAIL_CODE

GEO_CONTENT_SET
GCS_ID
NAME
TREE_ID (FK)
LIST_ALL_CHECK_BOX_IND
SRC_TABLE_NAME

DATASET
DS_NAME
DSSP_NAME (FK)
GCS_ID (FK)
LONG_NAME
DISP_LABEL
DS_TYPE
DESCR
UPD_FRQ_TYPE
GEO_IDENT_IND
GEO_CMPNT_IND
CI_IND
LIST_LABEL
LIST_TEXT
DFLT_CI_NBR
DISP_ORDER
PARENT_IND
DATASET_URL
REFERENCE_URL
FILTER_IND
SORT_IND
DOWNLOAD_IND
SRC_SCALE_DENOM_TEXT
PLACE_KYWD
WEST_BOUNDING_COORD

GEO_TREE_CONTENT
TREENODE_ID (FK)
GCS_ID (FK)
GSL_CODE (FK)

GEO_REF
GEO_ID
BUCKET_ID (FK)
GSL_CODE (FK)
NAME
DIVISION
STATE
COUNTY
TRACT
CD106
BLKGROUP
BLOCK
BLOCKSUF
PLACE
PLACECC
ZIPCODE

GEO_TREE_GSL
TREE_ID (FK)
GSL_CODE (FK)
DISP_ORDER
LIST_IND
SEARCH_IND
SEARCH_FORM_CODE
ADDR_FIND_IND
MAP_FIND_IND
LIST_ALL_IND
LIST_DFLT_IND
GEO_REF_COL_NAME
LAYER_NAME
LIST_LABEL
RSLT_LABEL
IMS_LAYER_NAME
DFLT_VTGC_NBR
PRMPT_LABEL
ALL_LABEL
GWG_DFLT_IND
MAP_DFLT_IND
ROOT_NODE_IND
INS_DATETIME
UPD_DATETIME

DATASET_SUPERSET_GEO_TREE
DSSP_NAME (FK)
SSM_NAME (FK)
TREE_ID (FK)
DS_NAME (FK)
INS_DATETIME

SEARCH_GEO_YEAR_PROGRAM
SSM_NAME (FK)
BUCKET_ID (FK)
TREE_ID (FK)

GEO_TREENODE_PARENT
PARENT_TREENODE_ID (FK)
GSL_CODE (FK)
TREENODE_ID (FK)

Figure 110: Key metadata entities for the geographic selection function

The key tables for geo selections are GEO_REF and GEO_TREENODE. The former hosts the geographic
entities as they are delivered by the Geo division in a flat, unstructured representation. The latter hosts
the geographies in a hierarchical structure, with the naming conventions for short names
(GEO_TREENODE.NAME) and fully specified names (GEO_TREENODE.PATH_NAME).

 Geographic trees and buckets

There are two key data elements that are the underpinnings of the entire geo selection functionality:

1. Geographic bucket – It is the superset of all geographies for a given survey and year. It matches
closely the non-spatial geo delivery from the Geo Division, and is organized in a flat, non-hierarchical
fashion, unlike the geo trees. The geographic bucket is identified by the BUCKET_ID. All bucket
identifiers are listed in table GEO_BUCKET, and represented in GEO_REF.

2. Geographic tree – The geographic tree is a hierarchical structure that supports the geo selection
function and provides the naming of the geographies, as they appear on displayed pages. All
geographic tree identifiers are listed in GEO_TREE, and are fully built in GEO_TREENODE. A
GEO_TREE can be one of the following types of trees:

Date Last Printed: 9/26/06 Page 192 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

a. Dataset tree – Built primarily for the underlying detailed tables, it can be obtained via the
following sample query snippet. A special case of such trees is for SAFF and CWS user
interfaces, which have dedicated “functional” datasets. These datasets are not made available
through the normal navigation through the datasets page
(AFF_META_CONTROL.AVAIL_CODE=’N’), but they are listed in the DATASET table, and each
have a tree, as well as tables, associated with them. It is expected that such trees be fully built in
GEO_TREENODE table.
select gt.tree_id, gt.name
from dataset ds,
 geo_content_set gcs,
 geo_tree gt
where gt.tree_id = gcs.tree_id
 and gcs.gcs_id = ds.gcs_id
 and ds.ds_name = ?

b. Dataset and context combo tree – It is built to distinguish between the geographies for
datasets, those that are appropriate for a particular context (or type of products), such as Quick
Tables (QT) or ACS Data Profiles (ADP), for example. In general, such queries are not fully built,
but simply used as geo summary level filters via MDR table GEO_TREE_GSL. A sample query for
such a sample QT tree is shown below.
select gt.tree_id, gt.name
from dataset ds,
 dataset_superset_geo_tree dssgt,
 geo_tree gt
where
 gt.tree_id = dssgt.tree_id
 and dssgt.ssm_name = 'VT_QT_GEO_SEL'
 and dssgt.dssp_name = ds.dssp_name
 and ds.ds_name = ?

c. Functional tree – Built to support functionality crossing datasets and products, it can be obtained
via queries such as this sample for Advance geo search, which uses the geo_bucket as the
driver.
select gt.tree_id, gt.name
from search_geo_year_program sgyp,
 geo_tree gt
where gt.tree_id = sgyp.tree_id
 and sgyp.bucket_id = ?
 and sgyp.ssm_name = 'ADVANCED PLACE NAME'

d. Context-based tree – Built to support Reference Maps, which are products without underlying
data. It is similar to the functional trees, with similar expectations for fully-built trees. The
keyword used for selection is: ‘REFERENCE MAP’ and the query is similar to the Functional
trees.

5.6.3.6.2. The concept of data-driving the geographies
The most important underlying design principle in dataset-based geo select is the driving of the geo
options based on the availability of the data, or to “data-drive” the geographic selections. In legacy
Decennial contexts, two drivers control the options:

1. The geo summary level availability for the dataset and context, as encoded by the geo tree. The
geo tree can be one of the two dataset-based trees, a and b. The geo summary levels are then
obtained by filtering GEO_TREE_GSL table by appropriate tree id.

2. Availability of data for every offered geography. This is verified by joining the GEO_TREE_CONTENT
table with GEO_TREENODE table and with the DATASET table

In the DT and QT contexts, due to the fact that geo and table selections are independent of each other, it
is possible for geo and table combinations to lead to no data. In such cases, the table title is displayed on

Date Last Printed: 9/26/06 Page 193 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

the result pages, with an explanatory note. However, data-driving the geographies ensures that all
offered geographies have data, only not in every one of the offered tables.

In newly designed contexts, such as American Community Survey’s Multi-Year Profiles (MYP), the geo
and table selections are not independent of each other. This is also facilitated by a smaller and
homogenous set of tables and a simplified navigation. On the other hand, the extra challenge of variable
layout per geography is managed by using an extended variation of the GEO_TREE_CONTENT table,
called GEO_TREE_CONTENT_VIRTUAL_TABLE. The table is used to verify what tables are available for a
given geography, either when navigating to the table result pages, or when prompting users in the left
navigational bar on the result page.

5.6.3.7. Geo select by list sub-component

5.6.3.7.1. Functional description
As in the other geo selection methods, a valid dataset selection is expected, with the exception of the
Reference Map context, in which a geo bucket selection is required. In this case, a drop down of survey
years is offered to the user on the geo select page. This selection option is not offered on all dataset-
based contexts.

The first selection option is a drop down with the target geographic types. Once the user makes a
selection, it indicates to the system that the user is now seeking a geo selection of that type (a.k.a.
geographic summary level, a.k.a. GSL_CODE, or the name of a column in several relevant MDR tables).
The system then offers a variable number of drill down lists leading to the geographic type selected.
Ultimately, the selectable options are included in a list box. In multi-geo selection pages, a “shopping
cart” list box is provided for accumulating the selections achieved after one or several rounds of
selections, via one or several selection methods.

5.6.3.7.2. Design Approach
Some of the more significant challenges of this geo selection method implementation are the variable
depth of drill downs, the adaptive set of geo summary levels traversed, based on the selections made
along the way, and also the sheer number of possible combinations, starting with the hundreds of geo
summary levels offered as targets. As requirements were getting refined, the initial implementation was
based on brittle if-else logic, which soon became impossible to manage in the regular data-driven way.
The current implementation, which has withstood the test of many data deployments, uses a stored
procedure call meta00.nsgeo.searchList()to obtain the projected geo summary level path. Then,
the code gradually traverses the path requesting queries that, in essence, fetch geo answers to the
question: “what are the geographies with (optionally) the parent geo from the previous drop down that
lead to valid data-supported geos of the target type”.

Date Last Printed: 9/26/06 Page 194 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select gtn1.treenode_id, gtn1.name, gtn1.path_name,
 gtn1.geo_id, gtn1.gsl_code
 from geo_treenode gtn1, geo_ref gr
 where gr.geo_id = gtn1.geo_id
 and gr.bucket_id = gtn1.bucket_id
 and gtn1.parent_treenode_id = (
 select treenode_id
 from geo_treenode gtn2
 where gtn2.gsl_code = ?
 and gtn2.parent_treenode_id = ?)
 and exists (
 select /*+ FIRST_ROWS */ 'TARGET CHILD GSL'
 from dataset ds,
 geo_tree_content gtc,
 geo_treenode_parent gtp
 where gtp.parent_treenode_id = gtn1.treenode_id
 and gtp.gsl_code = ?
 and gtc.treenode_id = gtp.treenode_id
 and gtc.gcs_id = ds.gcs_id
 and ds.ds_name = ?)
 order by gtn1.disp_order

The example shows a query used to fetch a list of counties that lead to Census blocks, with a given state
geography as the parent. The bind parameters are, respectively: the summary level of the geographyies
to be fetched (‘050’ in this example), the treenode_id of the parent (selected state), the summary level of
the target geographies (‘010’ for blocks, in this example), and the dataset identifier.

In the case of Geographic Comparison Tables (GCT), a table component called geographic stub is
selected together with the geography, and together with table box head and the sourcing information, are
making up the table. Currently, not all stubs are suitable for all tables. Some of the stubs come in pairs,
ranked and not ranked, others simply are applicable to a subset of the box heads. Transparently to the
user, the geo selection page prompts the user to select either one or two complementary, uncommitted
selections. On the next screen, only the tables applicable to the stub(s) selection are offered for
selection. If the user decides to change again geographies and stubs, it is possible to set up either a
selection trap in which some selections become invisible or to lead to a set of mutually exclusive options.
In such a case, an error screen is displayed, the previous selections dropped and the user is prompted to
start again on a new selection path. It is worth noting that only the list geo selection method is offered for
GCTs, recognizing the fact that only high-level, main-stream geo selections are offered. Hence, users
are not expected to encounter any difficulty in making their selections to warrant the offering of alternate
selections methods.

Date Last Printed: 9/26/06 Page 195 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.3.7.3. Class diagram

G S

HttpServlet

(from http)

H S

AFFServlet

(from co mmon)

AFFParameters
(from common)

GeographySearchViewAdapter
(from search)

GeoSearchServlet
(from search)

DDGeoSearchServlet
(from search)

DDGeoServlet
(from search)

DDGeoSearchByListServlet
(from search)

GeographyType
(from g eograph y)

GeographyEntity
(f ro m ge ography)

GeoTree
(f ro m ge ography)

GeographyService
(from search)

GeographyKey
(from geography)

AFFKey
(from key)

GeographyFactory
(f ro m geo graphy)

GeographyBuilder
(f ro m geo graphy)

TreeIdGeographyService
(from search)

TreeIdGeographyFactory
(from geography)

TreeIdGeographyBuilder
(from geography)

<<uses>>

<<instantiates>>

<<uses>>

<<uses>>

<<instantiates>><<uses>>

<<uses>>

<<uses>> <<uses>>

<<instantiates>>
<<uses>>

<<builds>>

<<builds>>

<<builds>><<builds>>

<<builds>>

<<builds>>

Figure 111: Class diagram for the Geo selection by list user scenario

The geo selection by list implementation follows a typical architecture in AFF, layered top-down from
controller, service and domain class interactions. The controller (DDGeoSearchByListServlet and its
super classes) controls the building of all business objects, which are ultimately placed in the view
adapter (GeographySearchViewAdapter), packed as a Java Bean attribute in the
HTTPServletRequest object before the super class AFFServlet forwards the request and response
objects to the Java Server Page (JSP). The entire stack of service, factory and builder classes knows
how to create single business objects (or groups of similar objects), upon request from the controller. The
workhorse method in the controller is processRequest(),which needs to be implemented by classes
that extend AFFServlet. Given the complexity of the controllers, a bean called GeoNut with no built-in
intelligence, in essence a structure, is used to pass around sets of parameters of interest in a simple
fashion. The builder, shown in the class diagram (Figure 111) as part of the integration tier, is
responsible for building the business objects. The set of business objects is much larger but, for
simplicity, only three were depicted in the class diagram. Two flavors of triplets (service, factory, builder)

Date Last Printed: 9/26/06 Page 196 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

are shown. One class interaction path is for non-dataset-based queries (in essence, Reference Maps),
the other is for dataset-based ones.

5.6.3.7.4. Sequence diagram
The following sequence diagram in Figure 112 summarizes the main interactions among classes with the
purpose of building the geo select by list function. The sequence diagram captures typical relationships
among servlets (such as the init sequence, which corroborates work executed by the base class and the
super class), typical patterns, such as the use of service, factory and builder method calls to use
persistence in the building of business objects, but also atypical class relationships. The more special
interactions among classes aim at reusing code among parallel methods of geo selection. The most
important underlying design criteria, besides the functional ones, where robustness in data-driving the
functionality, and high performance in handling significantly large amounts of geographic selections.

Date Last Printed: 9/26/06 Page 197 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 :
Ge o Se a rch S e rvle t

 :
DDG e o S e archS ervle t

 :
DDG e oS ea rch B yL i stS e rvle t

 :
G eo g ra p h yS e rvi ce

 :
P e rsiste n tFa cto ry

 :
G eo g rap h yFa cto ry

 :
G e o g ra p hyB u i ld e r

in i t()
su p e r.in i t()

g e tG e o Su m m a ryL e ve lP a th ()

g e tG e o L istSu m a ryL e ve lPa th ()g e tG e o En ti tyL ist()

B u i l d s
re cu rsive ly th e
d rop d o wn s fo r
e a ch tra ve rse d
su m m ary le ve l

u p d a te Cu rre n tS e lecti o ns()

Co n so l id a te s
g e o se le ctio ns.
P e rfo rm a n ce
e n ha n ce m e n t
fo r la rg e se ts o f
u se r se le ctio ns.

com m o n P ro ce ssRe q u e st()

p ro ce ssReq u e st() i s n o t
e xp ecte d to re tu rn . In ste ad , i t
fo rces a fo rward a cti o n to th e
JS P b y ca l l in g the ca l lP a ge () o r
ca l l Pa g e Na m e d () fu n cti on s
im p le m e n te d b y th e su p ercla ss.

g e tG e o En ti tyL ist()

 : A FFS e rvle t

d o G e t()

sup e r.i n i t()

p ro ce ssRe q u est()

com m o n P ro ce ssRe q u e st(A FFP a ra m e te rs, V iewA d a pte r)

ge tS e a rch ea b le S u m m a ryL eve ls()

g e tDa ta se t()

ge tG e oSu m m a ryL eve l s()
g e tG eo L istSu m m aryL e ve l s()

ge tP e rsiste n tSe t(Pe rsisten tK e y)

cre a te Ob jects(P e rsiste n tK e y)

g e tG eo L istSu m m aryLe ve ls(G e o gra p h yKe y)

g e tS e le cta b le Ge o T yp e sA n dE n ti ti e s()

d oP ost()

g e tV ie wA d a p te r()
p a rse P ara m e te rs()

ca l l Pa ge ()

Figure 112: Sequence diagram for the list geo selection method

5.6.3.7.5. Data model
The only table relevant to this selection method not included in Figure 110 is GEO_TREE_OUTLINE,
which provides the outline of the summary level list offered as the first selection option.

Date Last Printed: 9/26/06 Page 198 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.3.8. Geo select by place name sub-component

5.6.3.8.1. Functional description

5.6.3.8.2. Design Approach
Place name search method of geo selection can either require a user to drill down to a finer summary
level (for lower level geographies like census tracts, block groups etc.) or can otherwise allow the user to
search at the US level. Since there is no metadata support for this, the rules defining this behavior are
defined in sbp.properties file. The search term, which is used to match a user’s search criteria are
maintained in MDR table geo_search, which associates a geo_id in a given bucket with the search term.
It is important to note that this table is maintained at the bucket level rather than at the tree level. The
geographies are first matched against geo_ref per user’s search criteria. For example if a user searches
for a block group in a given state, county, tract then a query similar to following is executed first:
Select from geo_ref where state=? And county = ? and tract=?

The column names to filter against are defined in geo_tree_gsl table. For example to determine what
column names are valid for state, county and tract for a given tree, a query similar to following can be
issued to geo_tree_gsl table:
Select geo_ref_column name from geo_tree_gsl where tree_id = ? and gsl_code = ?

The results of this query can then be used to form the query shown above. The results of rows returned
by query to geo_ref are then matched against geo_search to get the hits that match user’s search term.
Also the user can restrict his search to either the entire nation or to a state.

Date Last Printed: 9/26/06 Page 199 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.3.8.3. Class diagram

G S

HttpServlet

(from http)

H S

AFFServlet

(from common)

AFFParameters
(from common)

GeographySearchViewAdapter
(from search)

GeoSearchServlet
(from search)

DDGeoSearchServlet
(from search)

DDGeoServlet
(from search)

DDGeoSearchByPlaceServlet
(f rom search)

GeographyType
(from geography)

GeographyEntity
(from geography)

GeoTree
(from geography)

GeographyService
(from search)

GeographyKey
(from geography)

AFFKey
(f rom key)

GeographyFactory
(from geography)

GeographyBuilder
(from geography)

GeoSearchService
(f rom search)

GeographySearchFactory
(from geography)

DataSetSearchBuilder
(from geography)

<<uses>> <<uses>> <<uses>>

<<instantiates>><<uses>>

<<instantiates>>

<<uses>>

<<uses>>

<<builds>>

<<builds>>

<<builds>>

<<builds>>

<<uses>>

GeoSearchKey
(from search)

SearchKey
(from search)

<<uses>><<instantiates>>

Figure 113: Class diagram for the Geo selection by place name search user scenario

5.6.3.8.4. Sequence diagram
The sequence of operations for place name search are very similar to those for search by list except that
GeoSearchService, GeoSearchFactory, DatasetSearchBuilder and GeoSearchKey classes are used
instead of GeographyService, GeographyFactory, GeographyBuilder and GeographyKey classes.

5.6.3.8.5. Data model
The only table not included in Figure 110 is geo_search, which maintains a search term to be used to
match a geography by name.

Date Last Printed: 9/26/06 Page 200 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.3.9. Geo select by address sub-component

5.6.3.9.1. Functional description
This method of geo selection is targeted towards users trying to find data without any specialized
knowledge of census geographies. Consequently, unlike other methods of selection, where is user is
required to indicate a type of geography he/she is interested in before providing any search criteria, this
method asks for the search criteria first (i.e. the address) and then displays all the geographies that
contain this address. This allows the user greater freedom in selecting all geographies that interest
him/her and discarding the rest without having to repeatedly search unless a summary level of interest is
“discovered”.

5.6.3.9.2. Design Approach
The fundamental principle that drives this method of selection is the fact that all census geographies are
based on blocks. In other words, a block is the atomic unit of all types of geographies. All other
geographies are defined in terms of one or more of these blocks. Thus if the identity of a block is
somehow established, the all other geographies containing this block can be established using the
geo_ref table. Whenever a user enters an address, the block, which contains this address is determined
by making a query to ArcIMS. ArcIMS in turn makes a query to Sagent Geocoder and returns the block id
to the calling routine. Once the block identifier is established, all other geographies containing this block
are easy to determine.

5.6.3.9.2.1. Interaction with Sagent and ArcIMS
Search by address method of selection relies on Custom Software by Sagent. This software includes two
key elements, a binary file containing all valid US addresses based on Census Geo Division’s
TIGER/Line files and a C based library that accesses this binary file and retrieves results based on
address searches. Annual surveys released in AFF lead to the need to support new releases of address
files. As of now, AFF supports 2000 & 2002 vintages of addressed with plans to support 2004 soon. To
provide a transparent mechanism to access this C library, an ArcIMS service is established for each geo
year. ArcIMS services provide a standard interface to AFF application and hide the implementation details
of interaction with Sagent from AFF. These services use a precompiled dynamic link library, which is
loaded at the ArcIMS startup time.

The address file is made available by Sagent on a quarterly basis, but is integrated less often in AFF due
to testing requirements.

5.6.3.9.2.2. Rules for creating geo ids
Once a block id is returned by Sagent, a list of geographies is compiled which can possibly contain this
block by locating this block in the geo_ref table. AFF uses some standard rules, which are normally
followed to form geo_ids of these geographies. For example, a county geo_id can be formed by using the
following rule:

Geo_id of county = “05000US” + STATE + COUNTY where STATE and COUNTY are the FIPS codes of
the state and county containing this block in the geo_ref table.

Similar rules exist for all census geographies supported by AFF. For a while, these rules were maintained
by the AFF application code. This necessitated a code change whenever a new summary level was to be
introduced. Later on these rules were externalized to Oracle as a stored procedure to minimize
application code changes.

5.6.3.9.2.3. Validating geo ids against trees
It is important to note that geo_ref table lists geographies on a bucket basis. Therefore it can potentially
include some geographies that have been excluded from dataset trees. Therefore, once the geo_ids are
formed following the naming rules, these geographies have to be validated against the geo trees. The
following sample query shows how these geographies are validated against trees

Date Last Printed: 9/26/06 Page 201 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select
 gtn.geo_id,
 gtn.gsl_code,
 gtn.path_name,
from geo_tree_gsl gtg, geo_tree_outline gto,
 geo_content_set gcs, dataset ds,
 geo_treenode gtn, geo_tree_content gtc,
 dataset_superset_geo_tree dsgt,
 geo_bucket gb, geo_bucket_block gbb
where gto.gsl_code = gtg.gsl_code
 and gto.tree_id = gtg.tree_id
 and gtg.list_all_ind = 'Y' /*list_ind*/
 and gtg.addr_find_ind = 'Y'
 and gtg.gsl_code = gtn.gsl_code
 and gtg.tree_id = dsgt.tree_id
 and dsgt.ssm_name = ?
 and dsgt.dssp_name = ds.dssp_name
 and gtc.treenode_id = gtn.treenode_id
 and gtc.gcs_id = ds.gcs_id
 and ds.ds_name = ?
 and gcs.gcs_id = ds.gcs_id
 and gtn.tree_id = gcs.tree_id
 and gtn.bucket_id = nvl(gbb.bucket_id,gb.bucket_id)
 and gb.bucket_id = gbb.block_bucket_id(+)
 and (gb.bucket_id,gtn.geo_id) in (...............)

The last “in” clause contains the list of bucket_id & geo_id pair to be validated against the tree, e.g. (50,
04000US01, 05000US01 etc.). Finally geographies of only those summary level types are displayed for
which address_find_ind has been set to be true in the geo_tree_gsl table.

It is important to note that more than one programs can share a common block bucket. For example
ACS2003, PEP 2003 etc. are all based on 2003 block bucket though they have different bucket_id’s that
correspond to their year and program. To avoid duplication of blocks (which can run into millions of rows
for each bucket), geo_ref stores block records by assigning a fake bucket_id to such blocks. Table
geo_bucket_block then associates the real AFF bucket_id’s to block_bucket_id as stored in the geo_ref
table.

Another variation is one geo type / summary level of more than one vintage in one geo bucket (e.g.
Congressional Districts).

Congressional Districts present a special challenge in that they have a separate bucket but are based on
Decennial 2000 blocks. To bind this special relationship, table geo_cobucket is used which associates the
Congressional District bucket to the decennial bucket.

Finally, at times it is possible that due to TIGER/Line correction, there is an anamoly between the block id
returned by Sagent and for which data was tabulated. The relationship between Sagent block id and real
block id is maintained by table geo_addr_bucket_geo.

Date Last Printed: 9/26/06 Page 202 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.3.9.3. Class diagram

G S

HttpServlet

(from http)

H S

AFFServlet

(from common)

MapServlet

fireJsp()
getLocale()
getUserSession()

(f rom map)

GeoAddressServlet
(f ro m ma p)

GeoAddressResultServlet
(from map)

SearchByAddressConfigurat ion
(from m ap)

SearchByAddressDataService
(from m ap)

IMapParameters
(from map)

<<Interface>>

Defines constants
used for
interaction with
user.

SearchByAddressViewAdapter
(from map)

<<uses>>

<<instantiates>>

<<instantiates>>

<<instantiates>>

GeocodeBuilder
(f ro m m ap)

<<uses>>

AdvGeoAddressResultServlet
(from map)

<<instant iates>>

Figure 114: Class diagram for the Geo selection by address search user scenario

Date Last Printed: 9/26/06 Page 203 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.3.9.4. Sequence diagram

 :
SearchByAddressConfiguration

AFF Infrastruc ture
Services

 :
GeoAddressResultServlet

 :
SearchByAddressDataService

 :
GeocodeFactory

 :
GeocodeBuilder

 :
GeocodeAgent

Parses the URL
parameters

processRequest()
parseParameters()

buildSearchByAddressConfiguration()
SearchByAddressConfiguration()

setStreet()

setZipCode()
setSSMName()

setApplicationPath()

generateGeoCodes()
createGeoCodeKey()

getGeocodes() buildGeocodes()
geocodeAddress()

GeocodeAgent()
setMinScore()
setMaxCandidates()

geocodeAddress()

fetchGeocodes()

populateViewAdapterWithFoundAddress()

fireJsp()

Creates a config object
and set all the search
parameters specified
by the user.

Call to the service
laye r to g et the l ist
of geog raphies.

Creates a key and
passes i t on to the
domain layer.

This method first figures out the
block id by call ing
geocodeAddress and then finds
al l the census geogprahies that
contain this block by cal ling the
fetchGeoCodes method.

Sets all the
parameters and
geocodes the
address and returns
the block id.

Prepare the view
adapter to be used
by the JSP in
rendering the page.

Finally call the JSP
that presents the
results to the user.

Figure 115: Sequence diagram showing the the interaction from controller to the builder for Search by Address method of geo
select

5.6.3.9.5. Data model
The only tables relevant to this method of selection that are not included in Figure 110 above are
geo_bucket_block, geo_cobucket and geo_address_bucket_geo.

5.6.3.10. Geo select by map sub-component

5.6.3.10.1. Functional description
This method of selection is an extension of reference maps that allows users to visually select
geographies of interest by interacting with a map. Using point and click method a user can add/delete
geographies from the current selection. The selected geographies are shaded in a light yellow shade to
provide a visual representation of the current geography “shopping basket”. To navigate to a point of
interest, user can also pan, zoom in, zoom out and perform various other functions, as with other maps.
The summary levels that can be selected using a map are presented in a drop down list. In AFF Search,
an additional drop down is presented to pick the program year. This method differs from other methods of
geography selection in that only one geo can be selected/deselected at a time although this restriction
can be overcome in future if “rubberbanding” is introduced, which can allow all geographies that lie within
a rectangle to be selected simultaneously.

5.6.3.10.2. Design Approach
This implementation of this method of selection draws heavily upon reference map functionality for
drawing maps and on common geo selection infrastructure for functions that pertain to the selection

Date Last Printed: 9/26/06 Page 204 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

process like session management, geo validation etc. Some of the tasks which this map has to perform
include determining the geography when a user clicks on a map to select a geography and adding
it/removing it from the selection, graying out geographies which are not available (for example states not
yet released for those datasets that are released on a flow basis), highlighting selected geographies,
weeding out geographies that aren’t selectable using a map because they don’t have corresponding
supporting spatial data etc.

5.6.3.10.2.1. Determining geography when a user clicks on the map
As the user clicks on a map to select a geography, the click point is converted to a world point (lat/long).
Next a spatial query is performed against a spatial layer, which corresponds to the current summary level
selected in the drop down (e.g., if on a DEC 2000 dataset, county is the selected item in the drop down,
then, depending on the zoom level, the spatial layer can be DEC_2000_COUNTY_P0G0_A or
DEC_2000_COUNTY_P0G3_A or DEC_2000_COUNTY_P0G6_A or DEC_2000_COUNTY_P1G6_A).
The exact layer to be queried is stored in the metadata table MAP_LAYER_GEO_TREE_GSL, which
associates a tree_id and zoom level to the SDE layer name. This query returns the geo id of the
geography user is interested in which is then added to the user selection.

5.6.3.10.2.2. Determining geographies that aren’t released or are unavailable
It is possible to have “holes” in the geo tree. This can happen when not all geographies within a summary
level have been released. If a map is used to select geographies from such a tree, then it is possible for
the user to select a geography that has not yet been released. To avoid this scenario, it is required that a
list of all geographies not yet released be complied and displayed in a gray color to give user an
indication of their special “unavailable” status. This is reverse of all other geography selection methods in
which the user is presented a list of only those geographies, which are already valid part of the tree. The
following query shows how to get such a list. It first computes all the geographies in the most extensive
tree (one for advanced search that includes all geographies in a bucket) and then checks if they exist in
the given dataset based tree.
 select gtn.geo_id, gtn.path_name, gtn.gsl_code, gtn.name
 from dataset ds, geo_content_set gcs, geo_tree gt,
 search_geo_year_program sgyp, geo_treenode gtn
 where gtn.gsl_code = ? /*'&GSL_CODE'*/
 and gtn.tree_id = sgyp.tree_id
 and sgyp.ssm_name = 'ADVANCED PLACE NAME'
 and sgyp.bucket_id = gt.bucket_id
 and gt.tree_id = gcs.tree_id
 and gcs.gcs_id = ds.gcs_id
 and ds.ds_name = ? /*'&DS_NAME'*/
 and not exists (
 select /*+ first_rows */ 'DATA'
 from geo_tree_content gtc, geo_treenode gtn1
 where gtc.gcs_id = GCS.gcs_id
 and gtc.treenode_id = gtn1.treenode_id
 and gtn1.tree_id = GCS.tree_id
 and gtn1.geo_id = GTN.geo_id
 and gtn1.bucket_id = GT.bucket_id)
 order by 4;

This test can be applied to any summary level assuming that data for each summary level can be
released at different schedules. For example, it is possible that data for a given state is released but not
for counties in that state; this can occur with programs that release their data on a rolling basis by
summary level.

5.6.3.10.2.3. Weeding out geographies that are not mappable but are in the selection
AFF has several geographies (e.g. parts) that don’t have corresponding spatial data and they can’t be
displayed or selected using the map selection tool. Also as a business rule some higher level
geographies like United States are not allowed to be selected using map tool. The following query lists all
such geographies:

Date Last Printed: 9/26/06 Page 205 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select gtg.tree_id, gsl.gsl_code, gsl.list_label from geo_summary_level gsl,
 geo_tree_gsl gtg
where gsl.gsl_code = gtg.gsl_code
 and gtg.gsl_code != '010'
 and gtg.list_ind = 'Y'
 and gtg.map_find_ind is null
order by 1,2

5.6.3.10.3. Class diagram

G S

HttpServlet

(from http)

H S

AFFServlet

(from common)

MapServlet

fireJsp()
getLocale()
getUserSession()

(from map)

MapDrawServlet

buildDefaultMapConfigurat ion()
getDefaultGeoSelection()
getDefaultService()
getGeoSelect ion()
getMapConfigurat ionFromSession()
handleMapActions()
populateViewAdapter()
processRequest ()

(from map)

SearchMapDrawServlet

fetchUnAvailableGeographies()
getAllSelectableSumLevels()
getGeoInGeoServlet()
getKeywordServlet()
getListServlet()

(from map)

MapConfiguration

getBucketId()
getGeoSelection()
getMapX()
getMapY()

(from map)

SearchMapConfiguration

getSelectedGSLCode()
isAllGeoTypesShown()

(from map)

MapDataService

getAllSearchMapBoundaryLabelNames()
getAllSearchMapBoundaryNames()
getAllSearchMapFeatureLabelNames()
getAllSearchMapFeatureNames()

(from map)

MapDrawService
(from map)

SearchMapDrawService

fetchUnAvailableGeographies()
isGeoNestingInState()
isStateBasedRelease()

(from m ap)

IMapParameters
(from map)

<<Interface>>

Base class does
most of the tasks
related to drawing a
map.

Base class
that stores
most of the
map state
information.

Base service
class that
interacts with
map domain.

Provides map view
group related
metadata.

Defines constants
used for
interaction with
user.

MapDisplayFactory
(from map)

Main entry
point to map
domain.

SearchMapDrawViewAdapter
(from map)

<<uses>>

<<instantiates>>

<<uses>>

<<uses>>

<<instantiates>>

Figure 116: Class diagram for the Geo selection by map user scenario

Date Last Printed: 9/26/06 Page 206 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.3.10.4. Sequence diagram

 :
SearchMapDrawViewAdapter

AFF Infrastructure
Services

 : SearchMapDrawServlet : SearchMapConfiguration : SearchMapDrawService

Parses the URL
p aramete rs

Gets the config
object which stores
map state from
HTTP session.

Builds default
MapConfiguration object
if the user is creating a
map for the first time
and sets default geo
selection, IMS service
name etc.

If state information
already exists then
updates it with the
latest user action. If a
geo select/deselect
action then updates
the selection
accordingly.

Gets the instance of
service class to be
used to generate
reference map.

Cre ate s th e view
adap ter bean to
be use d by JSP.

Call to the service layer to
generate the map. For
details of how this layer
interacts with map domain,
see the Service Domain
Interaction diagram.

In some instances it is
important to call service
layer more than once.
This method provides
the opportunity to
collect any extra
information this service
may provide besides
returning the
MapDisplay object.

Logs the current map
request to the user stats
log file.

Prepares the view adapter
bean to be used by JSP in
rendering the reference
map page.

Modifies the
MapConfiguration
object with the latest
map state like extent,
zoom level etc.

Sets the curren t
Map Confi gurat ion
o bje ct b ack to HTTP
sessi on, so it can be
u sed for a ny su bse quen t
requests.

Finally calls the JSP
to render the map to
be sent back to the
user.

processRequest()
parseParameters()

getMapConfigurationFromSession()

buildDefaultMapConfigurat ion()

buildMapConfigurat ion()

getDrawService()

getViewAdapter()

callBackService()

logRequest()
populateViewAdapter()

modifyMapConfigurationFromDisplay()

setMapConfigurationToSession()

fi reJsp()

setGeoSelect ion()

setService()
setAction()

setMapX()
setMapY()

setAction()

setDisplayHeight()
setDisplayWidth()

setDisplayCenterX()
setDisplayCenterY()

generateMap()

setMapGifName()
setLegendGifName()

setMapImageDir()

Figure 117: Sequence diagram for the Geo selection by map method

5.6.3.10.5. Data model
Please refer to section on Reference Maps for entities that play a role in storing map view group
metadata. For non-spatial geo metadata, this method of selection relies on the same metadata tables as
other methods.

5.6.3.11. Geo select by geo within geo sub-component

5.6.3.11.1. Functional description
This method of selection allows users to select geographies by basic relationships between summary
levels. For example to select all county subdivisions in a state using the list method, the user has to select
all counties in that state one by one and then add all county subdivisions in each county to the selection.
Using, this method of selection, however allows the user to skip the step of choosing a county first and to
instead select all county subdivisions in that state directly. This method is specially suited for bulk
selection of geographies. Also, the design allows for setting up geo within geo combinations for summary

Date Last Printed: 9/26/06 Page 207 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

levels, which don’t have a direct hierarchical relationship between them, for example, all county
subdivisions in a metropolitan area.

5.6.3.11.2. Design Approach
Implementation of geo within geo method of selection is accomplished by adding 2 new tables to the
Metadata repository. Table GEO_TREE_INTERACT associates a summary level to all the parent
summary levels supported. It also maintains a flag to indicate if a child parent summary level combination
is fully nested or not. If it is fully nested (for example, all county subdivisions in a state) then the
relationship can be established using the regular GEO_TREENODE_PARENT table, which lists all the
valid children for all tree nodes. Table GEO_INTERACT_PARENT is used for those cases where the
relationship isn’t hierarchical (for example, all county subdivisions in a metropolitan area). This table has
the same structure as GEO_TREENODE_PARENT except for an additional flag (fully_contained_ind),
which tells if a given geography contains another geography fully or partially. This table is pre populated
using block level information per bucket. Following query shows all the summary levels supported by geo
within geo method of selection:
select gto.gsl_code,
gto.disp_order, gto.tree_id, gtg.gwg_dflt_ind
from geo_tree_gsl gtg, geo_content_set gcs, dataset ds,
 geo_tree_outline gto, geo_summary_level gsl
where gsl.gsl_code = gtg.gsl_code
 and gto.gsl_code = gtg.gsl_code
 and gto.tree_id = gtg.tree_id
 and gtg.tree_id = gcs.tree_id
 and gcs.gcs_id = ds.gcs_id
 and ds.ds_name = ? /* DS_NAME */
 and exists (
 select /*+ FIRST_ROWS */ 'OK'
 from geo_tree_content gtc
 where gtc.gsl_code = GTO.gsl_code
 and gtc.gcs_id = DS.gcs_id)
 and exists (
 select /*+ FIRST_ROWS */ 'OK'
 from geo_tree_interact gti
 where gti.gsl_code = gtg.gsl_code
 and gti.tree_id = gtg.tree_id)
order by gto.disp_order

The query first gets all the summary levels for the tree and then intersects it with the geo_tree_interact
table to figure out all the summary levels valid for this method of selection. Once the user picks a
summary level of interest, the list of valid parent summary levels is again determined by querying the
geo_tree_interact table:
select gti.interact_gsl_code, gti.fully_contained_ind,
 from geo_content_set gcs, dataset ds, geo_tree_interact gti, geo_tree_outline gto,
 geo_tree gt, search_geo_year_program sgyp
 where gti.interact_gsl_code = gto.gsl_code
 and gti.gsl_code = ?
 and gti.tree_id = gcs.tree_id
 and gto.tree_id = sgyp.tree_id
 and sgyp.ssm_name = 'GEO INTERACT'
 and sgyp.bucket_id = gt.bucket_id
 and gt.tree_id = gcs.tree_id
 and gcs.gcs_id = ds.gcs_id
 and ds.ds_name = ?
order by display_order

Date Last Printed: 9/26/06 Page 208 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Once the user has picked a summary level of interest (e.g. county subdivisions) and a parent summary
level of interest (e.g. in a state), the treenode_id of interest (corresponding to state chosen) has been
established. Depending on whether the summary level of interest is fully nested within parent summary
level (as specified by geo_tree_interact table) one of the following queries in 5.6.3.11.2.1 or 5.6.3.11.2.2
can be executed to find all the geographies:

5.6.3.11.2.1. Sample query for finding geographies, which nest fully in a parent geography
This query is similar to one used by list selection method and uses the geo_treenode_parent table for
findling all child geographies for a given parent treenode_id. Since all combinations of child and parent
geographies follow strict hierarchical rules (e.g. all county subdivisions in a state), all child geographies
for a given parent are implicitly fully contained for that parent.
select
 gtn.treenode_id, gtn.name, gtn.path_name, gtn.geo_id, gtn.disp_order,
 gtn.gsl_code, 'N' part_ind, gtn.tree_id
 from geo_treenode gtn, geo_treenode_parent gtp, geo_tree_content gtc,
 geo_content_set gcs, dataset ds
where gtc.treenode_id = gtn.treenode_id
 and gtc.gcs_id = ds.gcs_id
 and gtn.treenode_id = gtp.treenode_id
 and gcs.gcs_id = ds.gcs_id
 and ds.ds_name = ? /*'&DS_NAME'*/
 and gtp.gsl_code = ? /*'&TARGET_GSL'*/
 and gtp.parent_treenode_id = (
 select treenode_id
 from geo_treenode gtn1
 where gtn1.tree_id = GCS.tree_id
 and gtn1.geo_id = ?) /*'&GEO_ID'*/

5.6.3.11.2.2. Sample query for geographies, which don’t fully nest in a parent geography
This query uses geo_interact_parent table to find child geographies which may or may not nest fully
within a given parent geography. More importantly these relationships aren’t hierarchical. Blocks are the
most basic units of geographies. All other census geographies are defined in terms of blocks. This table is
populated by analyzing the block level records in the geo_ref table and determining what geographies are
fully or partially contained in another geography.
select /*+ index(gtn1 gtn_gr) index(gtn2 gtn_pk) */
 gtn.treenode_id, gtn.name, gtn.path_name, gtn.geo_id, gtn.disp_order,
 gtn.gsl_code, nvl(gip.part_ind, 'N') part_ind
 from geo_treenode gtn, geo_INTERACT_parent gip, geo_tree_content gtc,
 geo_content_set gcs, dataset ds, geo_treenode gtn1, geo_treenode gtn2,
 geo_tree gt, search_geo_year_program sgyp
where gtc.gcs_id = ds.gcs_id
 and gtc.treenode_id = gtn.treenode_id
 and gtn.tree_id = gcs.tree_id
 and gtn.gsl_code = ? /*'&TARGET_GSL'*/
 and gtn.geo_id = gtn2.geo_id
 and gtn.bucket_id = gtn2.bucket_id
 and gtn2.treenode_id = gip.treenode_id
 and gip.gsl_code = '050'
 and gip.parent_treenode_id = gtn1.treenode_id
 and gtn1.geo_id = ? /*'&GEO_ID'*/
 and gtn1.tree_id = sgyp.tree_id
 and sgyp.ssm_name = 'GEO INTERACT'
 and sgyp.bucket_id = gt.bucket_id
 and gt.tree_id = gcs.tree_id
 and gcs.gcs_id = ds.gcs_id
 and ds.ds_name = ? /*'&DS_NAME'*/

Date Last Printed: 9/26/06 Page 209 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.3.11.3. Class diagram

G S

HttpServlet

(from http)

H S

AFFServlet

(f rom common)

AFFParameters
(from common)

GeographySearchViewAdapter
(from search)

GeoSearchServlet
(from search)

DDGeoSearchServlet
(from search)

DDGeoServlet
(from search)

DDGeoInGeoListSearchServlet
(from search)

GeographyType
(f rom g eograph y)

GeographyEntity
(f rom geo graphy)

GeoTree
(f rom g eograph y)

GeographyService
(from search)

GeographyKey
(from geo gra phy)

AFFKey
(from key)

GeographyFactory
(f rom geo graphy)

GeographyBuilder
(f rom geo graphy)

GeoInGeoService
(from search)

GeoInGeoFactory
(from geography)

GeoInGeoBuilder
(from geography)

<<uses>> <<uses>> <<uses>>

<<instantiates>><<uses>>

<<instantiates>>

<<uses>>

<<uses>>

<<builds>>

<<builds>>

<<builds>>

<<uses>>

<<uses>>

<<builds>>

<<instantiates>>

Figure 118: Class diagram for the Geo within geo method of geo selection

5.6.3.11.4. Sequence diagram
The sequence of operations for geo within geo method of selection are very similar to those for search by
list except that GeoInGeoService, GeoInGeoFactory and GeoInGeoBuilder classes are used instead of
GeographyService, GeographyFactory and GeographyBuilder classes.

5.6.3.11.5. Data model
That only tables relevant to this method of selection that are not included in Figure 110 are
geo_tree_interact and geo_interact_parent. The former maintains all the parent child relationships
supported by AFF and also a flag to indicate whether a child is fully contained within the parent or not.
Table geo_interact_parent is similar to geo_treenode_parent and contains all child geographies for a
given parent that don’t follow the strict hierarchical rule. Some of these child geographies may be fully
contained within the parent while some not. This is indicated by an additional flag called part_ind. For
example there is no direct relationship between counties and metropolitan area. All counties that are fully

Date Last Printed: 9/26/06 Page 210 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

contained for a given metropolitan area will have their part_ind set to ‘N’ while all those that are only
partially contained will have the flag set to ‘Y’.

5.6.4. Subject Selection

5.6.4.1. Description
Subject Selection refers to the selection of a tables or themes for viewing. Within subject selection, there
is a sub-component that allows the filtering of tables and themes by subject groupings or topics. In the
user interface (UI) these topics are called subjects themselves but are really groupings of subjects. To
avoid confusion, the terms topic or topics will be used to refer to what are called subjects in the UI.

To view tables and maps, AFF requires the selection of specific subjects i.e. tables or themes. There are
three distinct ways in which subjects can be selected in the majority of AFF products:

• Subject select by list method - This method displays all available subjects for the specific dataset in
a list. The user simply traverses the list and selects the desired subject or subjects for viewing. The
size of the list varies depending on the dataset that is selected. This option is available for all
contexts.

• Subject select by keyword method - The user has the ability to search for subjects using a keyword
search. This option is not available for GCT and GRT contexts.

• Subject select by topic method - Using a list of topics, the user can filter the list of available
subjects. This option is not available for GCT and GRT contexts.

• Special Case: GRT subject selection method - The GRT context has a hybrid subject selection
page that lists all the available subjects grouped by topics and geography summary level (State,
Counties, Places). In essence the GRT context provides the geography selection and subject
selection on a single page. The underlying logic for subjects is almost identical to other contexts; the
display format is where the main difference exists.

In the normal AFF navigation, the user selects a dataset and geography before selecting a subject. An
alternate navigation path to the subject selection page can be taken when there is a deep link to a table
or map result page. From the result page a user can then select the subject page and modify the
selection. The code for subject selection only requires the selection of a valid dataset. In some instances,
a topic must be also selected.

The users subject selections are stored in the session based on the context (DT, QT, TM etc.). If the user
changes datasets, the previous subject selection is dropped from the session since subjects are specific
to a dataset.

The context also determines the number of subjects that can be selected for viewing. DT and QT contexts
allow the selection of multiple subjects where as all other contexts only allow a single subject. This is
controlled at the JSP level where there is a check for the context to determine if there is single or multiple
allowable selections. The GCT context only allows the subject selection by list method. This is also
controlled at the JSP level, which does not make the tabs visible for the other selection methods.

For the DT and QT contexts, which allow multiple selections of subject, there is also a constraint of how
many subjects can be selected at the same time for viewing. This is configured in the resource bundle file
by context: /properties/LimitCatalog.properties.

5.6.4.1.1. Custom Tables
The Custom tables interface offers the three methods for subject selection mentioned above, in addition,
it provides the ability to perform a search for specific data elements that are associated with subjects.

Subject selection in custom tables is treated differently because the implementation differs from other
contexts. The sub-components do not follow the general architectural paradigm used throughout AFF. In
other AFF areas there is a standard paradigm where the builder objects are responsible for creating
business objects from the database. For custom tables, there are no standalone builders. The factory
creates key objects (gov.census.infrastructureservices.jdbc.SQLKey) that actually contain

Date Last Printed: 9/26/06 Page 211 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

“builder” objects (gov.census.infrastructureservices.jdbc.SQLQueryEntry), which in turn
store the actual SQL and the bind parameters for the prepared statement. There is a generic object
gov.census.infrastructureservices.jdbc.DefaultSQLOperation that is used to execute
the queries that is passed from the SQLKey object. More detailed information can be found in section
5.6.4.10.

5.6.4.2. Place of component in functional view
In the canonical selection path through AFF, the subject selection page is after the Select a geography
page. In most cases the subject selection is the final step before results are rendered. For iterated
datasets there is an additional step that allows the selection of population groups. From the results page,
if a user selects to change their geography, the application will use the subject that is stored in the
session. In order to alter the subject selections, the user must explicitly select the subject screen from the
breadcrumb.

Figure 119: Place in functional view

5.6.4.3. Specification documentation
The functional specification document for subject selection is located in:

I:\BA\02 Functional Specifications\AFF\Archive\Thru Release 9.3\
Fspec_7.0_Select Tables_R7_v2.0.doc.

For map theme selection see:
I:\BA\02 Functional Specifications\AFF\Archive\Thru Release
9.3\Fspec_20.0_Thematic Maps_Path_R9_3_v1.0.doc.

5.6.4.4. URL (named servlets) to Java servlet class mapping
This section lists the controller classes used for subject selection grouped by method. Various attributes
are listed for each, such as the implementation classes, the JSP file used for display and if multiple
subjects can be selected.

The following conventions are used in this section to save space and make the following tables easier to
read:

• URIs are prefixed by /servlet/.

• The packages containing the Implementation Servlet Classes, and the directories containing the
JSPs, are by context as shown in Table 39.

• Multiple subject selection is by context, and not by the selection method, as shown in Table 39.

Context Multi Geo Support Package for Implementation Servlet Class JSP Directory
CT Y gov.census.aff.controller.customtable /jsp/customTable/
DT Y gov.census.aff.controller.subject /jsp/subject/
GCT N gov.census.aff.controller.subject /jsp/
GRT N gov.census.aff.controller.table /jsp/subject/
QT Y gov.census.aff.controller.subject /jsp/subject/
TM N gov.census.aff.controller.subject.thematicmaps /jsp/subject/

Table 39: Context-specific subject selection configuration items

Date Last Printed: 9/26/06 Page 212 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.4.4.1. Select Subject by List
Table 40 shows the select subject by list URIs and attributes:

Context URI (named servlet) Implementation Servlet Class JSP
CT CustomTableServlet CTElementsServlet ctElementSelectFromAllTables.jsp
DT DTSubjectShowTablesServlet SubjectShowTablesServlet subjectListAll.jsp
GCT GCTSubjectShowTablesServlet SubjectShowTablesServlet gct_show_tables.jsp
GRT GRTSelectServlet GRTSelectServlet GRTSelectMain.jsp
QT QTSubjectShowTablesServlet SubjectShowTablesServlet subjectListAll.jsp
TM TMSubjectAllThemesServlet TMSubjectAllThemesServlet subjectListAll.jsp

Table 40: Servlet details for subject selection by list

5.6.4.4.2. Select Subject by Keyword
Table 41 shows the select subject by keyword URIs and attributes:

Context URI (named servlet) Implementation Servlet Class JSP
CT CTSubjectKeywordServlet CTElementsServlet ctSelectWithKeyword.jsp
DT DTSubjectKeywordServlet SubjectKeywordServlet subjectByKeyword.jsp
GCT N/A N/A N/A
GRT N/A N/A N/A
QT QTSubjectKeywordServlet SubjectKeywordServlet subjectByKeyword.jsp
TM TMSubjectKeywordServlet TMSubjectKeywordServlet subjectByKeyword.jsp

Table 41: Servlet details for subject selection by keyword

5.6.4.4.3. Select Subject by Topic
Table 42 shows the select subject by topic URIs and attributes:

Context URI (named servlet) Implementation Servlet Class JSP
CT CTSubjectShowTablesServlet CTElementsServlet ctSelectFromSubject.jsp
DT DTSubjectShowTablesServlet SubjectShowTablesServlet subjectListAll.jsp
GCT N/A N/A N/A
GRT N/A N/A N/A
QT QTSubjectShowTablesServlet SubjectShowTablesServlet subjectListAll.jsp
TM TMSubjectAllThemesServlet TMSubjectAllThemesServlet subjectListAll.jsp

Table 42: Servlet details for subject selection by topic

5.6.4.5. Class re-use and cooperation in subject select
The subject selection classes are reused for most contexts in AFF with the exception of the thematic
maps (TM context) and custom tables. For thematic maps the separation exists only for the subject
selection by list option, which has it’s own set of classes. Keyword and topic selection options for TM
reuse the same components as other contexts. Custom table subject selection is a special case that does
not follow the same pattern as other sub-components, this is highlighted in section 15.6.4.10.

Date Last Printed: 9/26/06 Page 213 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

BaseSubjectServlet
(from subject)

AFFServlet
(from common)

<<Http_Servlet>>

SubjectAllThemesBuilder
(from su bje ct)

SubjectShowTablesBuilder
(from subject)

SubjectBuilder
(from subject)

ThemesBuilder
(from subject)

TMSubjectServlet
(from thematicmaps)

SubjectServlet
(from subject)

SubjectKeywordServlet
(f rom subj ect)

SubjectShowTablesServlet
(f rom subj ect)

TMSubjectAllThemesServlet
(from thematicmaps)

TMSubjectKeywordServlet
(from thematicmaps)

SubjectAllThemesFactory
(from subject)

-$_factory

SubjectShowTablesFactory
(from subject)

SubjectFactory
(from subject)

-$subjectFactory

ThemesFactory
(f ro m subj ect)

-$_factory

-_builder

MatrixTabFactory
(from subject)

-$_factory

MatrixTabBuilder
(from subject)

SubjectKeywordBuilder
(from subject)

SubjectKeywordFactory
(f rom subj ect)

SubjectNode
(from subject)

SubjectList
(from subject)

SubjectSearchService
(from subject)

Figure 120: Class diagram depicting the main classes used for the subject selections methods. This is for DT, QT, GCT, GRT and
TM contexts.

A single service layer class SubjectSearchService is used to all three types of subject selection
methods, however, each selection method has it’s own factory and builder classes. All the factory classes
with the exception of SubjectKeywordFactory extend PersistentFactory. This allows for the
results (business objects) to be cached, where as keyword searches should never be cached. The
business objects that are created by the builder classes consist of lists and nodes. The list typically
consists of subjects or topics, for example SubjectList. Nodes are the elements that make up the lists.
For example, SubjectNode is the node element that would make up the list SubjectList. Depending
of the subject selection method, there are different types of lists and nodes, but they are implementations
of the same interfaces, IList and INode. The individual nodes are not cached but rather the lists that
contain the nodes. This requires list implementations (with the exception of SubjectKeywordList) to
extend the Persistent class in order to be cacheable.

The list and nodes classes are not all included in the above class diagram. Since they all follow the same
pattern, only the SubjectList and SubjectNode classes are included to illustrate the purpose and
relationship of these classes.

5.6.4.6. Key data model components for subject select
The data model below shows the common metadata entities that are used for subject selection. A subject
can be stored in THEMATIC_MAP, MATRIX_TABLE or VIRTUAL_TABLE entities. The SUBJECT_TREE and
SUBJECT_TREENODE entities are used for topics. The SUBJECT_TREE holds the roots of the topic trees,
which are stored using a parent child relationship on the SUBJECT_TREENODE. All subjects in AFF are
organized into groups by a topic tree. There is additional information on topic tree in section 5.6.4.9. The
AFF_META_CENTRAL and AFF_META_CONTROL entities are used to control the availability/visibility of
various metadata in AFF. Subject availability is also controlled in these structures.

Date Last Printed: 9/26/06 Page 214 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 121: Key metadata entities for subject selection

5.6.4.7. Subject select by list all sub-component

5.6.4.7.1. Functional description
The subject select by list method simply displays a list of all available subjects for the selected dataset. In
this method, the user simply selects the desired subject or subjects depending on the context. As
previously mentioned, the TM and GCT contexts only permit the selection of a single subject.

5.6.4.7.2. Design Approach
The design approach for subject selection by list follows the typical architecture in AFF. This sub-
component employs that same layered approach, where the controller calls the service, which calls the
factory layer, which calls the builder layer to create the necessary business objects
(gov.census.aff.domain.subject.SubjectShowTablesList). The list
(SubjectShowTablesList) object consists of node objects that hold the subject information that is
displayed to the user. The business objects are placed into the view adapter
(TableSearchViewAdapter), which is then placed into the request object for display by the JSP page
(/jsp/subject/subjectListAll.jsp). The same controller implementation class is reused for
varies contexts that support this selection method, there is a separate named Servlet entry for each
context that supports this selection method.

The following SQL is an example of a query that returns subjects associated with a specific dataset. This
query will vary depending on the context.

Date Last Printed: 9/26/06 Page 215 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select vt.vt_name, vt.vtbh_nbr,
 nvl(vtbh.list_label,vtbh.disp_label) title,
 vtbh.vtbh_nbr||'. '||nvl(vtbh.list_label,vtbh.disp_label) disp_label,
 vt.disp_order
from
 virtual_table vt,
 virtual_table_box_head vtbh,
 aff_meta_central amc,
 aff_meta_control amk
where amk.avail_code = 'Y'
and amk.amc_id = amc.amc_id
and amc.vt_name = vt.vt_name
and vt.vtty_code in ('DP','QT','VAR')
and vt.ds_name = 'DEC_2000_SF1_U'
and vt.vtbh_nbr = vtbh.vtbh_nbr
and vt.vtbh_svy_abbr = vtbh.vtbh_svy_abbr
and vt.vtbh_svy_year = vtbh.vtbh_svy_year
order by 5,1

5.6.4.7.3.
This SQL also illustrates how the AFF_META_CENTRAL and AFF_META_CONTROL entities are checked
for a subject’s availability in AFF. In this example the subjects are stored in the VIRTUAL_TABLE entity.
The VIRTUAL_TABLE_BOX_HEAD entity holds information that is needed to display the correct names of
the subjects.

The query below is used for thematic maps (TM) context. In this case there is a join to a different table.
The display information that is required for thematic maps subjects (themes) is stored in the
THEMATIC_MAP entity.

Date Last Printed: 9/26/06 Page 216 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select tm.tm_name, tm.disp_label
from thematic_map tm,aff_meta_central amc, aff_meta_control amk
where tm.ds_name = 'DEC_2000_SF1_U'
and amk.amc_id = amc.amc_id
and amc.tm_name = tm.tm_name
order by tm.disp_order

5.6.4.7.4. Class diagram

BaseSubjectServlet
(from subject)

SubjectBaseViewAdapter
(from subject)

AFFKey
(from key)

SubjectBaseKey
(from subject)

DatasetBuilder
(from metadata2)

AFFServlet
(from common)

<<Http_Servlet>>

DatasetFactory
(from metadata2)

-$_factory

Dataset
(from m etadata 2)

AFFParameters
(from common)

SubjectSearchViewAdapter
(from subject)

SubjectShowTablesBuilder
(f rom subj ect)

SubjectShowTablesServlet
(from subject)

SubjectShowTablesFactory
(f rom subj ect)

SubjectTablesKey
(from subject)

SubjectSearchService
(from subject)

-$subjectSearchService

SubjectAllThemesFactory
(from subject)

-$_factory

SubjectAllThemesBuilder
(from subject)

SubjectShowTablesList
(f rom su bje ct)

SubjectTableNode
(from subject)

Figure 122: Class diagram for subject selection by list method

As depicted in the above diagram, the builder (SubjectShowTablesBuilder) makes use of the
DataSetFactory class. This is because the implementation of retrieving a list of associated subjects
based on a dataset is implemented as part of the DatasetFactory and DatasetBuilder. Also note
that SubjectShowTablesFactory does not extend the PersistentFactory object since the
DatasetFactory already handles the caching of the returned business objects. If the
SubjectShowTablesFactory extended the PersistentFactory class the returned objects
would get cached twice. In the case of SubjectAllThemesFactory, this class extends
PersistentFactory in order to cache the returned list of subjects for the TM context.

The factory class creates SubjectShowTablesList, which are essentially vectors of
SubjectTableNode objects. The service returns these objects to the controller class
SubjectShowTablesServlet. The controller is responsible for placing these in the view

Date Last Printed: 9/26/06 Page 217 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

adapter, SubjectSearchViewAdapter that is then placed into the http request object for display by the
JSP page /jsp/subject/subjectListAll.jsp.

5.6.4.7.5. Sequence diagrams
The following sequence diagrams show the interaction between varies objects that support the subject
selection by list functionality. The object interaction for the DT, QT and GCT context follows the typical
AFF model. The DataSetFactory is used to retrieve the list of subjects based on a dataset. The
methods that are called will differ from context to context, but the overall interaction is identical.

 :
SubjectShowTablesBuilder

Infrastucture :
SubjectShowTablesServlet

 :
SubjectSearchService

 :
SubjectShowTablesFactory

 : Dataset

 :
DatasetFactory

 :
DatasetBuilder

processRequest(req, resp)

getSubjectShowTablesList(params)

getSubjectShowTablesList(tableKey)

callPage()

getSubjectTableNodesQT(tableKey)
getPersistent(key)

createObject(key)

getDataset(id, locale)

getDataset(id, localeIn)

Dataset()

getQuickTables()

Methods called
depends on
context; could be
GCT, DT or QT

Figure 123: Contexts DT, QT and GCT.

Since the TM context used different classes the interaction is depicted separately in the sequence
diagram below. The typical AFF paradigm for controller, service, factory and builder layers is consistent in
the object interaction.

Date Last Printed: 9/26/06 Page 218 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Infrastucture :
TMSubjectAllThemesServlet

 :
SubjectSearchService

 :
Subject AllThem esFacto ry

 :
SubjectAllThemesBuilder

processRequest(req, resp)

getAllThemesList(params)
getPers istentSet(key, recurseCount)

createObjects(persistentKey)

getSubjectShowAllThemesList(themMapsKey)

callPage()

Figure 124: Context TM subject select by list.

5.6.4.7.6. Data model
Refer to section 5.6.4.6.

5.6.4.8. Subject select by keyword sub-component

5.6.4.8.1. Functional description
In subject selection by keyword the user enters a search term and performs a search of subjects that
match. A list of matches in listed in a selection box. The user can select appropriate subject or subjects
depending on if the dataset supports multiple subject selections. The selected subjects are add to a list
box if the user has the option to select more than one, otherwise the user is only offered the option to
select a single subject and continue to the result page or population group page.

5.6.4.8.2. Design Approach
Each searchable subject in AFF has a search term column associated with it in
AFF_META_CENTRAL.SEARCH_TERM. This column is user by the application to find all subjects that
match the entered search term. The SQL below demonstrates how the application searches for the term
‘race’ within the QT context. Other contexts that provide subject selection by keyword as an option use
similar SQL.

In this implementation the SubjectKeywordFactory object does not extent the
PersistentFactory object since keyword search results should never be cached. Given the variety of
search terms that can be entered, it would not make sense to cache the result list. The keyword search
sub-component relies on the ContextParser component for parsing/translating of search terms enter
by the user based on certain rules.

Please refer to section 5.4.2.5 for further information on the ContextParser component.

Date Last Printed: 9/26/06 Page 219 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select vtbh.VTBH_NBR||'. '||nvl(vtbh.list_label,vtbh.disp_label) disp_label,
 vt.vt_name
from virtual_table vt, virtual_table_box_head vtbh,
 aff_meta_control amk, aff_meta_central amc
where vt.ds_name = 'DEC_2000_SF1_U'
 and vt.vtbh_nbr = vtbh.vtbh_nbr
 and vt.vtbh_svy_abbr = vtbh.vtbh_svy_abbr
 and vt.vtbh_svy_year = vtbh.vtbh_svy_year
 and vt.vtty_code in ('QT','DP','VAR')
 and vt.vt_name = amc.vt_name
 and amk.avail_code = 'Y'
 and amk.amc_id = amc.amc_id
 and amc.src_table_name = 'VIRTUAL_TABLE'
 and contains(amc.search_term, 'race') > 0
order by 1, vt.disp_order

If the search term is an asterisk (*), the application uses the SQL statement (or similar) below for subject
selection by list. This will return all the subjects associated with the specific dataset.

Date Last Printed: 9/26/06 Page 220 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select vtbh.VTBH_NBR||'. '||nvl(vtbh.list_label,vtbh.disp_label) disp_label,
 vt.vt_name
from virtual_table vt, virtual_table_box_head vtbh,
 aff_meta_control amk, aff_meta_central amc
where vt.ds_name = 'DEC_2000_SF1_U'
and vt.vtbh_nbr = vtbh.vtbh_nbr
and vt.vtbh_svy_abbr = vtbh.vtbh_svy_abbr
and vt.vtbh_svy_year = vtbh.vtbh_svy_year
and vt.vtty_code in ('QT','DP','VAR')
and vt.vt_name = amc.vt_name
and amk.avail_code = 'Y'
and amk.amc_id = amc.amc_id
and amc.src_table_name = 'VIRTUAL_TABLE'
order by 1, vt.disp_order

5.6.4.8.3. Class diagram

Subject Key wordKey
(f rom sub ject)

SubjectBaseKey
(f rom sub ject)

SubjectKeywordLis t
(f rom su b je ct)

Subjec tKeywordNo de
(from sub ject)

SubjectBaseViewAdapter
(f rom su b je ct)

AFFServlet
(from common)

<<Http_Servlet>>

AFFParameters
(from com m on)

SubjectUtil
(from sub ject)

KeywordS ea rchViewAdapter
(f rom su b je ct)

SubjectKeywordServlet
(f rom su b je ct)

BaseSub jectServlet
(from subject)

SubjectSearchService
(f rom su b je ct)

-$subjectSearchService

SubjectKeywordFactory
(from sub ject)

ContextParser
(f ro m ct xp arse)

SubjectKeywordBuilder
(from sub ject)

Figure 125: Class diagram for subject select by keyword.

The class diagram shows the main classes that are used to support the keyword subject selection
function. It also includes a reference to the ContextParser object, which is used for parsing search
terms entered by the user.

Date Last Printed: 9/26/06 Page 221 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The utility class SubjectUtil is used to parse the list of tables that are selected by the users. The list
of selected tables that is passed from the interface is delimited by (“+”). This class parses the list and
places valid tables into a vector which is in turn placed into the view adapter
(KeywordSearchViewAdapter) for presentation in the JSP page
(/jsp/subject/subjectByKeyWord.jsp).

The business objects that are created by the builder are SubjectKeyWordList, which contains a vector
of SubjectKeywordNode objects. Following the same paradigm as other AFF subject sub-components,
the list, SubjectKeyWordList is placed into the view adapter for display by the JSP.

5.6.4.8.4. Sequence diagram
The sequence diagram details the interaction between the various classes that support subject selection
by keyword. The use of utility classes SubjectUtil and ContextParser is also depicted in the
diagram. The methods that are invoked will be different for various contexts, but the overall interaction
remains identical.

 :
SubjectKeywordFactory

Infrastructure :
SubjectKeywordServlet

 :
SubjectSearchService

 :
SubjectKeywordBuilder

 : SubjectUtil

 :
ContextParser

processRequest(req, resp)

getSubjectKeywordList (params)

getDataset(ds_name, localeIn)

getSubjectKeywordList(keywordKey)
getSubjectKey wordNodesQT(keywordKey)

Method will
vary based on
context

SQL used differs
in * entered as
search term

pars eUs erQuery(input , fuz zySearch, useSynoynms, dictionary)

parseTables(TableNames, TableVector, context, localeIn)

Figure 126: Sequence Diagram subject selection by keyword.

Date Last Printed: 9/26/06 Page 222 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.4.8.5. Data Model

Figure 127: Key data model entities used for subject selection by keyword.

Subject selection by keyword relies mostly on the AFF_META_CENTRAL.SEARCH_TERM column and
AFF_META_CONTROL.AVAIL_CODE. The former allows the search term to be matched against specific
AFF subjects and the latter lets the application determine if the subject should be available for viewing to
AFF users. In the following example SQL for thematic map subjects, there is a check of the AVAIL_CODE
column in AFF_META_CENTRAL and the SEARCH_TERM column is compare to the search term entered by
the user:
select tm.disp_label, tm.tm_name, tm.math_nbr
from thematic_map tm,
 aff_meta_control amk,
 aff_meta_central amc
where tm.ds_name = 'DEC_2000_SF1_U'
and tm.tm_name = amc.tm_name
and amk.avail_code = 'Y'
and amk.amc_id = amc.amc_id
and amc.src_table_name = 'THEMATIC_MAP'
and contains(amc.search_term, 'race') > 0
order by 1, tm.disp_order;

5.6.4.9. Subject select by topic sub-component

5.6.4.9.1. Functional description
Topic trees (a.k.a. subject trees) are used in AFF for several other areas of functionality, such as related
items. In the subject selection by topic function, a user has the ability to filter the selectable subjects by
choosing a specific topic from a drop down. This drop down of topics is displayed in a hierarchy, which
illustrates that the selectable topics are themselves grouped under parent topics. Here is an example of a
topic tree for a specific dataset under a specific context. This topic tree also includes subjects at the
appropriate node location in the tree.

Date Last Printed: 9/26/06 Page 223 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

====Population and Housing Unit Totals and Geographic Concepts====
.... Area Measurement
.... Households and Families
........ QT-H3. Household Population and Household Type by Tenure: 2000
.... Housing Unit Totals
.... Population Density
.... Population Totals
.... Urban/Rural
.... Urban/Rural, Metropolitan/Nonmetropolitan Residence
====Population Totals - Race and Ethnic Groups====
.... American Indian and Alaska Native
........ QT-P6. Race Alone or in Combination and Hispanic...
........ QT-P7. Race Alone or in Combination for American Indian, Alaska Native
.... American Indian and Alaskan Native Tribes
........ QT-P8. Race Alone or in Combination for Selected...
.... Asian
........ QT-P6. Race Alone or in Combination and Hispanic or Latino: 2000
........ QT-P7. Race Alone or in Combination for American Indian, Alaska Native
.... Black or African American
........ QT-P6. Race Alone or in Combination and Hispanic or Latino: 2000
.... Hispanic or Latino (Including Types of Hispanics)
........ QT-P3. Race and Hispanic or Latino: 2000
........ QT-P9. Hispanic or Latino by Type: 2000
.... Hispanic or Latino/Not Hispanic or Latino, by Race
........ QT-P3. Race and Hispanic or Latino: 2000
........ QT-P4. Race, Combinations of Two Races, and Not Hispanic or Latino...
........ QT-P6. Race Alone or in Combination and Hispanic or Latino: 2000
.... Native Hawaiian and Other Pacific Islander
........ QT-P6. Race Alone or in Combination and Hispanic or Latino: 2000
........ QT-P7. Race Alone or in Combination for American Indian, Alaska Native, an
.... Race (Including Detailed Categories of Race)
........ QT-P3. Race and Hispanic or Latino: 2000

In this example, if the user selects “Hispanic or Latino/Not Hispanic or Latino, by Race” from
the drop down, the application would return the following subject listing:
........ QT-P3. Race and Hispanic or Latino: 2000
........ QT-P4. Race, Combinations of Two Races, and Not Hispanic or Latino...

As noted, the indentation of each row suggests its level within the tree. The lowest level represents actual
subjects that would be displayed to the user if they selected to filter by its parent topic. A topic tree it
simply used to organize subjects within a dataset.

The SQL below is used to get generate the above topic tree with related subject nodes listed in the
correct positioning (note: entire result not included above – enough to illustrate the concept).

Date Last Printed: 9/26/06 Page 224 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select stn.disp_order disp_order,
decode(stn.node_level,2,stn.disp_label,3,'.... '||stn.disp_label,4,'........ '
||stn.disp_label) DISP_LABEL
from subject_treenode stn
where parent_ind = 'Y'
start with parent_treenode_id = (
 select treenode_id from subject_treenode where st_id =
 (select st_id from subject_tree where st_name = 'VIRTUAL TABLES BY DATASET')
 and disp_label =
 (select disp_label from dataset where ds_name = 'DEC_2000_SF1_U')
)
connect by prior treenode_id = parent_treenode_id
union
select stn.disp_order disp_order,
decode(stn.node_level,2,stn.disp_label,3,'.... '||stn.disp_label,4,'........ '
||stn.disp_label) DISP_LABEL
from subject_treenode stn ,aff_meta_central amc ,virtual_table vt
where vt.vtty_code = 'QT'
 and vt.vt_name = amc.vt_name
 and amc.amc_id = stn.amc_id
 and stn.treenode_id in (
 select stn.treenode_id from subject_treenode stn where avail_code = 'Y'
 start with parent_treenode_id =
 (select treenode_id from subject_treenode where st_id = (
 select st_id from subject_tree
 where st_name = 'VIRTUAL TABLES BY DATASET')
 and disp_label = (
 select disp_label
 from dataset
 where ds_name = 'DEC_2000_SF1_U'))
 connect by prior treenode_id = parent_treenode_id)
order by disp_order

5.6.4.9.2. Design Approach
For performance reasons, the topic tree without the subject nodes/leaf nodes is cached by the
application. The lists of subjects based on the topic are also cached. So there would be several cached
lists based on the topic unique identifier that is used as part of the key within the caching subsystem.

The following SQL is used to extract the list of subjects for a specific topic. This example is based on the
QT context. The SQL varies based on the context for example Thematic Maps (TM context) there are
different tables that are used to store the subjects (themes). The overall concept is the same for all
contexts that have this selection method as an option.
select stn.treenode_id,
 vtbh.vtbh_nbr||'. '||nvl(vtbh.list_label,vtbh.disp_label) disp_label,
 amc.vt_name
 from aff_meta_central amc, subject_treenode stn, virtual_table vt,
 virtual_table_box_head vtbh
 where vt.vtbh_nbr = vtbh.vtbh_nbr
 and vt.vtbh_svy_abbr = vtbh.vtbh_svy_abbr
 and vt.vtbh_svy_year = vtbh.vtbh_svy_year
 and vt.vtty_code in ('QT','DP','VAR')
 and vt.vt_name = amc.vt_name
 and amc.amc_id = stn.amc_id
 and stn.avail_code = 'Y'
 and stn.parent_treenode_id = 9261026
order by stn.disp_order

For the GRT contexts a similar approach was adopted. As previously mentioned, the topic trees are used
for related items and other areas of functionality. In order not to interfere with other supported
functionality, a new topic tree was created for GRT context to support subject selection. The new topic

Date Last Printed: 9/26/06 Page 225 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

tree 'RANKING TABLES BY DATASET', was created as a special case because of the following
reasons:

• Ordering: The order of other topic trees is based on the DISP_ORDER columns in the
SUBJECT_TREE table. Part of the subject selection requirements for GRTs was that the leaf nodes,
would be sorted alphabetically with in each topic. This requires for the parent topics to have a valid
DISP_ORDER based on their location in the tree, but for leave nodes the DISP_ORDER must be
identical relative to the parent DISP_ORDER. This allows for the use of the alphabetical sort in
addition to the sort by the DISP_ORDER columns. See the query below.

• Display labels: The display label that is used for related items did not match the subject’s title that
should be displayed in the case of GRT.

The following SQL is used in the code to display the subjects for GRT context. Although it is similar, to the
SQL listed in the function description, which covers topic trees in general, there are a few things to note.
The first note how the actual leave nodes (subjects) have the same value in the DISP_ORDER column
relative to the parent topic. Secondly the order by clause at the end of the SQL includes an alphabetical
sort. Because the DISP_ORDER is listed first, the nodes will fall into the correct positioning, and then
they will be sorted alphabetically within the topic grouping. Lastly, note that there are additional columns
that are need to uniquely identify the tree nodes (subjects): boxhead number (vt.vtbh_nbr) and geo
combo number (vt.vtgc_nbr).

Date Last Printed: 9/26/06 Page 226 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select stn.disp_order disp_order, stn.parent_treenode_id, stn.treenode_id,
 stn.disp_label DISP_LABEL,
 decode(stn.node_level,3,'S',4,'Y','N') MT_AVAIL_IND,
 stn.node_type,stn.node_level, stn.amc_id, 'X' vt_name, 'X' vtbh_nbr,
 'X' vtgc_nbr, 'X' DISP_LABEL_SUFFIX
 from subject_treenode stn
 where parent_ind = 'Y'
 and decode(stn.node_level,3,'S',4,'Y','N') != 'N'
 start with parent_treenode_id = (
 select treenode_id
 from subject_treenode
 where st_id =
 (select st_id from subject_tree where st_name = 'RANKING TABLES BY DATASET')
 and disp_label =
 (select disp_label from dataset where ds_name = 'ACS_2003_EST_G00_')
)
 connect by prior treenode_id = parent_treenode_id
union
select stn.disp_order disp_order, stn.parent_treenode_id, stn.treenode_id,
 vtbh.disp_label DISP_LABEL, decode(stn.node_level,3,'S',4,'Y','N') MT_AVAIL_IND,
 stn.node_type,stn.node_level, stn.amc_id, vt.vt_name vt_name, vt.vtbh_nbr,
 vt.VTGC_NBR, vtgc.DISP_LABEL_SUFFIX
 from subject_treenode stn, aff_meta_central amc, virtual_table vt,
 virtual_table_box_head vtbh, virtual_table_geo_combo vtgc
 where vt.vtty_code = 'GRT'
 and vt.vt_name = amc.vt_name
 and vt.VTBH_NBR = vtbh.VTBH_NBR
 and vt.VTBH_SVY_ABBR = vtbh.VTBH_SVY_ABBR
 and vt.VTBH_SVY_YEAR = vtbh.VTBH_SVY_YEAR
 and vt.VTGC_NBR = vtgc.VTGC_NBR
 and amc.amc_id = stn.amc_id
 and stn.treenode_id in (
 select stn.treenode_id
 from subject_treenode stn
 where avail_code = 'Y'
 start with parent_treenode_id = (
 select treenode_id
 from subject_treenode
 where st_id =
 (select st_id from subject_tree where st_name = 'RANKING TABLES BY DATASET')
 and disp_label =
 (select disp_label from dataset where ds_name = 'ACS_2003_EST_G00_')
)
 connect by prior treenode_id = parent_treenode_id)
order by disp_order, disp_label

5.6.4.9.3. Class diagram

Date Last Printed: 9/26/06 Page 227 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

BaseSubjectServlet
(from subject)

SubjectBuilder
(from subject)

SubjectFactory
(from subject)

-$subjectFactory

MatrixTabBuilder
(from subject)

MatrixTabFactory
(from subject)

-$_factory

AFFServlet
(from common)

<<Http_Servlet>>

AFFParameters
(from common)

SubjectBaseKey
(from subject)

SubjectBaseViewAdapter
(from subject)

MatrixList
(from subject)

MatrixNode
(f rom subject)

SubjectKey
(f rom subject)

MatrixKey
(from subject)

SubjectSearchService
(from subject)

-$subjec tSearchService

SubjectSearchViewAdapter
(from subject)

SubjectList
(from subject)

SubjectNode
(f rom su bje ct)

SubjectServlet
(from subject)

SubjectUtil
(from subject)

Figure 128: Class diagram for subject selection by topic.

In this design there are two factories, SubjectFactory and MatrixTabFactory. The
MatrixTabFactory is used to retrieve the list of tables based on a topic unique identifier. The
SubjectFactory, which is also used by the related items function, is used for retrieving the list available
topics for a specific dataset. These respective builders have list and node business objects that are used
to hold the results.

The same view adapter SubjectSerachViewAdapter is used to hold the business objects that are
used to display results to the user.

5.6.4.9.4. Sequence diagram
In the sequence diagrams below there are two scenarios shown. The first diagram shows subject
selection by topic for all contexts that support this method. There are two basic operations happening:

1. Retrieval of the topic tree associated with the selected dataset that has the name.

2. The component then retrieves all the subjects (tables) associated with the selected dataset AND
subject.

The second diagram shows the retrieval of GRT subjects and topic tree. The GRT implementation uses a
single query to retrieve the entire topic tree include the associated subjects, in the correct position relative
to their parent topic. The filtering of results by topic for GRT is handled on the front-end by the JSP page.
So for GRTs, the entire tree is cached in a single object. This is a different approach from the other

Date Last Printed: 9/26/06 Page 228 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

contexts where the lists of subject based on the topic are cached. The GRT context has a display that
shows the entire tree organized by subjects on a single page. Other contexts do not have this
requirement so it made more sense to cache individual lists.

Infrastructure :
SubjectServlet

 :
SubjectSearchService

 :
SubjectFactory

 :
SubjectBuilder

 :
MatrixTabFactory

 :
MatrixTabBuilder

 : SubjectUtil

processRequest(req, resp)

getDataset(ds_name, localeIn)

getSubjectList(params)
getPersistent(key)

createObject(key)

getSubjectList(subKey)

getSubjectNodesQT(SubKey)

getPersistent(key)
createObject(key)

getMatrixList(matKey)

getMatrixNodesQT(matKey)

parseTables(TableNames, TableVector, context, localeIn)

Figure 129: Sequence diagram for subject selection by topic.

Date Last Printed: 9/26/06 Page 229 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Infrastructure :
GRTSelec tServlet

 :
SubjectSearchService

 :
SubjectFactory

 :
SubjectBuilder

processRequest(req, resp)

getSubjectList(params)
getPersistent(key, recurseCount)

createObject(key)

getSubjectList(subKey)

getSubjectNodesGRT(subKey)

callPage()

Figure 130: Sequence Diagram for GRT context.

5.6.4.9.5. Data Model
Refer to section 5.6.4.6.

5.6.4.10. Custom table subject selection sub-component

5.6.4.10.1. Functional description
Custom tables subject selection provides the same options as other contexts; i.e. List, Keyword and
Topic. Once a user finds the appropriate subject they can then view the data elements associated with
the subject. They can they select to include specific data elements to view in the custom table. The
custom table function provides additional functionality that allows keyword searches for data elements.
This functionality relies on the AFF_META_CENTRAL.SEARCH_TERM column to match keywords. The
sub-component also makes use of the ContextParser component for parsing and translating of search
terms based on certain rules.

Please refer to 5.4.2.5 for further information on the ContextParser component.

5.6.4.10.2. Design Approach
The design approach for custom table subject selection deviates from the normal AFF paradigm. The
main difference is in what are normally the builder objects that construct all the business objects from the
database. Normally the builder reads parameters from key objects and binds them to the prepared
statement before execution. In the case of custom tables, the key object
(gov.census.infrastructureservices.jdbc.SQLKey) has a reference to an object
gov.census.infrastructureservices.jdbc.SQLQueryEntry, which has the SQL and bind
parameters needed for the prepared statement. The SQLQueryEntry object is used as part of the key
that also uniquely identifies the cached result objects that are returns to the PersistentFactory. The
sequence diagrams below provide additional object interaction information.

Date Last Printed: 9/26/06 Page 230 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The underlying SQL that is executed for custom tables for subject selection is very similar as the SQL that
is described in each of the three selection methods.

The custom table data element search function provides a means for a user to search directly for data.
The following SQL is used to facilitate that search:
select /*+ index(amc META_CNTRL_SRCH_TERM) */ mtcdc.mt_name||'.'||dc.dc_name DE_NAME,
dc.dc_name||' - '||dc.disp_label, '0' fmt_indnt_level, mt.disp_order, dc.dc_name
from matrix_table_cell_data_cell mtcdc, data_cell dc,
aff_meta_control amk2, aff_meta_central amc2, aff_meta_central amc, matrix_table mt
where mt.mt_name = mtcdc.mt_name
and amk2.avail_code = 'Y'
and amk2.amc_id = amc2.amc_id
and amc2.amt_name = 'MT'
and amc2.mt_name = mtcdc.mt_name
and mtcdc.dc_id = dc.dc_id
and dc.search_ind = 'Y'
and dc.parent_dc_id is null
and dc.ds_name = 'DEC_2000_SF1_U'
and dc.dc_id = amc.dc_id
and amc.amt_name = 'DCMT'
and contains(amc.search_term, 'SYN(gender , DC_SYNS)',1) > 0 order by 4,5

As in the subject keyword search sub-component, the query relies on the
AFF_META_CENTRAL.SEARCH_TERM column to match search terms against specific data elements that
make up detailed tables for a specific dataset. The data elements are stored in MATRIX_TABLE_CELL
and DATA_CELL tables.

Also note the use a hint in the query to improve performance. Given the many entries in
AFF_META_CENTRAL for data elements, it’s important that the query response time is optimized. The
oracle SYN operator allows the query to use synonyms that are defined in the database thesaurus.

Date Last Printed: 9/26/06 Page 231 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.4.10.3. Class diagram

AFFServlet
(from common)

<<Http_Servlet>>

SQLRowResultImpl
(from jdbc)

AFFKey
(from ke y)

CTElementsServlet
(from customtable)

CTSelectColumnsService
(from customtable)

SQLRowResult
(from jdbc)

<<Interface>>

GetTableListService
(from subject)

SQLKeyBase
(from jd bc)

AbstractSqlOperation
(from jdbc)

CustomTableFactory
(from customtable)

-$instanceQueryCTElementsSearch
(from queries)

-$instance

QueryCustomTableDisplayLabel
(from q uerie s)

-$instance

QueryCustomTableElements
(f rom q ueries)

-$instance

QueryDetailTablesFromDataset
(from queries)

-$instance
QueryDTsFromSearch

(from queries)

-$instance

QueryDTsFromSubject
(from queries)

-$instance

QueryGetDTSubjects
(f rom que ries)

-$instance

BuilderFromSQLKeyImpl
(from builder)-$builder

-$builder
-$builder

-$builder
-$builder

-$builder
-$builder

BuilderFromStatement
(f rom bu il der)

SQLKey
(from jdbc)

<<Interface>>

DefaultSQLOperation
(from jdbc)

-sqlKey

Figure 131: Class diagram for custom table subject selection.

The above diagram includes key classes that are used to support the subject selection functionality for
custom tables. The BuidlerFromSQLKeyImpl class is responsible for passing the SQL information that
is contain in the key (SQLKeyBase) to the DefaultSQLOperation, which is a concrete subclass of
AbstractSqlOperation. DefaultSQLOperation assembles all parameters for the SQL and then
executes the prepared statements but does not have to perform any default behavior such as opening
and closing the database connections. The super class AbstractSqlOperation handles this default
behavior. The DefaultSQLOperation also has generic mapping functionality that allows database
types that are returned to be processed without the caller explicitly using rs.getInt() or
rs.getString() etc. methods to retrieve data from the result set. The mapping functionality uses the
result set metadata rs.getMetaData() to determine each column data type when retrieving results.

All database results are encapsulated in the SQLResult object, which is an iteration of SQLRowResult
objects. Each SQLRowResult object represents a single row if the result set. The SQLResult object is
cached with the SQLKey object that is used to create is as the key to the hash table.

5.6.4.10.4. Sequence diagram
The sequence diagrams below shows the interaction of the major classes that support custom table
subject selection. To avoid repetition, there are two scenarios depicted using three sequence diagrams.
The scenarios that are shown are:

1. When a use performs a subject selection by list.

2. When a user executes a keyword search for data elements.

Scenario 1 is depicted in the first two diagrams. The second scenario is depicted using all the three
diagrams. There are notes included in the sequence diagram that indicate when the scenario continues in
another diagram.

Date Last Printed: 9/26/06 Page 232 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

In the sequence diagrams below there are two services, CTSelectColumnsService and
GetTableListService. In the typically AFF model one service handles all requests for a given function. In
custom tables implementation, the responsibility is divided, where one service is used to data elements
(CTSelectColumnsService) and the other service is used for subject listings (GetTableListService).

 :
CTSelectColumnsService

Infras tructure :
CTElementsServlet

 :
GetTableListService

 :
CustomTableFactory

 : SQLKeyBase :
SQLQueryEntry

processRequest(request, response)

processRequest(request, params, viewAdapterIn)

processRequest(request, params, viewAdapterIn)

processDataset(affParams, viewAdapter)

Continued in
part 2.

getCTElemtsFromSearch(viewAdapter, dsName, searchTerm, localeIn)

Continued in part 3. Only
invoked if data element
search

getAllTables(viewAdapter, dsName, localeIn)

createKey(mapIn, iQueryIn, bindValues, localeIn)

SQLQueryEntry(queryTypeIn, queryIn, columnsIn)

getPersistent(key)

createObject(key)

Figure 132: Part 1 of sequence diagram depicting subject selection for custom tables.

Date Last Printed: 9/26/06 Page 233 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 :
CustomTableFactory

 :
JDBCConnectorMetadata

 :
BuilderFromSQLKeyImpl

 :
DefaultSQLOperation

 :
SQLResultList

Factory return
PersistentObject
which is cached

createObject(key)

JDBCConnectorMetadata(localeIn)

build(key, connectorIn)

returns connection

createAbstractSqlOperation(connectorIn, key)
DefaultSQLOperation(connectorIn, sqlQueryEntryIn)

execute()

constructResultFromResultSet(rs)

createNewSQLResult(rsmd)

SQLResultList(columnListSize)

returns object
returns Object

returns SQLResultList Object

Figure 133: Part 2 of sequence diagram depicting subject selection for custom tables.

 :
CTSelectColumnsService

 : SQLKeyBase :
QueryCTElementsSearchSyn

 :
AbstractSearchBuilder

 :
SQLQueryEntry

 :
CustomTableFactory

createNewProperties(initSize)

QueryCTElementsSearchSyn(dynamicElementsIn)

createKey(mapIn, iQueryIn, bindValues, localeIn)

getSqlQueryEntry()

updateSearchTermWithSynonyms(synSQL, searchTermSubst, searchTerm)

SQLQueryEntry(queryTypeIn, queryIn, columnsIn)

getPersistent(key) createObject(key)

After this point
excution is similar
to previous
diagram

Figure 134: Part 3 of sequence diagram depicting subject selection for custom tables, only if the user has performed a data element
keyword search.

Date Last Printed: 9/26/06 Page 234 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.4.10.5. Data Model

Figure 135: Key data model entities used custom tables subject selection.

Each detailed table entry that is stored in MATRIX_TABLE consists of many cells that can be labels or
data. These cells are stored in MATRIX_TABLE_CELL. For every cell that is data (MTC_TYPE=’D’), there
is an entry in MATRIX_TABLE_CELL_DATA_CELL, which relates the data cell to an entry in DATA_CELL.
The DATA_CELL table holds formatting and display information for the data cells. The idea is that
formatting information stored in DATA_CELL can be share amongst matrix tables.

Also note the parent child relationship that exists in the DATA_CELL table. For ACS custom tables there is
a requirement that only the estimate data elements to be selectable when creating a custom table. All
DEC data elements and ACS estimate data elements should always have a null value for the
DATA_CELL.PARENT_DC_ID column. This requires lower and upper bound data elements for ACS to
have values in the DATA_CELL.PARENT_DC_ID field referencing their respective estimate row. Queries
that are used to retrieve data elements in the subject selection components always have the condition
WHERE PARENT_DC_ID is NULL.

5.6.5. Create a Table (full example)

5.6.5.1. References
The following documents should be reviewed as an extension of this section’s subject matter or as
supplemental reference material.

Date Last Printed: 9/26/06 Page 235 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 The functional specification is available as I:\BA\02 Functional Specifications\AFF\Archive\Thru
Release 9.3\Fspec_8.0_Display_Results_R8_v2.0.doc

5.6.5.2. Functional Description
The act of creating a table is the final objective after all selections have been made. The exact look of the
rendered table depends on the presentation path the user selected to display the data, the specific set of
tables, geographies or other selection criteria that the user has chosen and the number of tables and
geographies returned.

The term ‘table’ is used generically to refer to producing a character based result page from rows of data
returned by constructing and executing a data warehouse query. Narrative Profiles and Statistical
Significance Charts, although they may appear quite different, are also produced within this infrastructure.
True graphical results such as thematic maps are produced by other means.

5.6.5.3. Design Approach
All result tables are built by combining metadata information about the formatting and contents of the
table with statistical information from the data warehouse. At a minimum, a dataset must be selected.
Then, depending on the type of presentation path selected, a Geography, Subject, Industry and/or
Population Group could be chosen depending on the requirements for a specific subsystem. Each
subsystem defines a unique CONTEXT to store all of the relevant selections made by the user.

The first step involves creating any metadata ‘domain’ objects required to build the query from the
selections made, either explicitly or implied, by the user. The appropriate service is called to package all
of the relevant information in a key object, which is passed on to the specific factory. The factory will
invoke a builder to construct an SQL statement, execute that statement in the data warehouse and then
format the results.

There are three types of metadata objects, which can be used to construct a query and render a table.
These are a Shell, Matrix and EconDataset. A Shell corresponds to information from the metadata
repository table VIRTUAL_TABLE and all of its supporting tables. A table created for a Shell object
contains data for one selected geography or industry. Even GCT and GRT table are shells in that
although they show data for multiple geographies, there is (at most) one required geography selection.
The geography selection may even be eliminated if the U.S. can be assumed. Likewise, the Matrix object
packages information from MATRIX_TABLE and its related tables. A Matrix can combine multiple
geography selections into the same table. The EconDataset relates to the rows in the DATASET table all
of its supporting tables. In the case of an EconDataset, this is all that is required to produce a table.

The result table marks the endpoint in the Canonical Selection Path through AFF.

Figure 136: Canonical Selection Path

5.6.5.4. Named Servlets
All servlets use the implementation class gov.census.aff.controller.table.TableServlet.
Any special processing required for a specific subsystem are handled by the specialized table service,
view adapter and JSP. These are all attributes (initialization parameters) of the named servlet and
specified in the web.xml file.Table 43 list all of the named servlets for producing tables.

Date Last Printed: 9/26/06 Page 236 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

CONTEXT Named Servlet SERVICE_NAME [1] VIEW_NAME [2] JSP_NAME [3]

adp ADPTable ADPTableService ShellTableView ADPTable.jsp

ct CTTable CustomTableService CustomTableView CTTable.jsp

dt DTTable DTTableService MatrixTableView DTTable.jsp

gct GCTTable GCTTableService ShellTableView GCTTable.jsp

gqr GQRTable GQRTableService ShellTableView GQRTable.jsp

grt GRTChart GRTTableService ShellTableView GRTChart.jsp

grt GRTTable GRTTableService ShellTableView GRTTable.jsp

grt GRTTableSS GRTTableService ShellTableView GRTTable.jsp

ibq IBQTable IBQTableService SummaryTableView IBQTable.jsp

iqr IQRTable IQRTableService ShellTableView IQRTable.jsp

myp MYPTable MYPTableService ShellTableView MYPTable.jsp

np NPTable NPTableService ShellTableView NPTable.jsp

pqr PQRTable PQRTableService ShellTableView PQRTable.jsp

iqr PIQRTable IQRTableService ShellTableView PIQRTable.jsp

qt QTTable QTTableService ShellTableView QTTable.jsp

[1] All SERVICE_NAME values are in the package gov.census.service.table unless otherwise noted.

[2] All VIEW_NAME values are in the package gov.census.aff.viewAdapter.table unless otherwise noted.
[3] All JSP_NAME values are in the /jsp/table directory unless otherwise noted.

Table 43: Named Servlets

In addition to the main table servlets, the congressional web site (cws) subclasses the main servlet
(gov.census.cws.controller.result.TableServlet) to override creating the view adapter.
Likewise, the Simple American FactFinder (SAFF) utilizes the services QTTableService for producing
result pages.

5.6.5.5. Class Diagrams

5.6.5.5.1. Overview
The following class diagrams show the relationships between the various objects used in constructing
and rendering a result table. There are a few main classes and interfaces used in this implementation.

All view adapters implement the interface ITableView and all services must implement
ITableService. Any key object used to produce a result table is a type of ITableKey that is used by
an instance of a class implementing ITableFactory.

The domain model shows the relationships between the three domain objects used to build tables.

Date Last Printed: 9/26/06 Page 237 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.5.5.2. View Adapter

ITableView
(f ro m tabl e)

<<Interface>>

ICharIterTableView
(from table)

<<Interface>>
TableView
(from table)

ShellTableView
(from table)

MatrixTableView
(from table)

CustomTableView
(from ta ble)

SummaryTableView
(from table)

Figure 137: View Adapter Class Diagram

All view adapter objects used within a JSP page must implement the ITableView interface. This is used
by the JSP useBean tag.

<jsp:useBean id="TABLE_VIEW" type="gov.census.aff.viewAdapter.table.ITableView"/>

The ICharIterTableView interface adds support for datasets supporting different population groups
like ancestry, race and ethnic groups.

Date Last Printed: 9/26/06 Page 238 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.5.5.3. Service

AbstractTableService

+ get Instance()

(from ta ble)
ITableService

+ createKeys()
+ createTables()

(f rom tabl e)

<<Interface>>

QTTableService
(from table)

PQRTableService
(from table)

NPTableService
(from table)

MYPTableService
(from table)

IQRTableService
(from table)

IBQTableService
(from table)

GRTTableService
(from table)

GQRTableService
(from table)

GCTTableService
(from table)

GCTDownloadService
(from table)

DTTableService
(from ta ble)

DBDownloadTableService
(f rom table)

CustomTableService
(from table)

ADPTableService
(from table)

Figure 138: Table Services Class Diagram

All services used to build result tables must implement the ITableService interface. This is specified
as the value of the initialization parameter SERVICE_NAME, for the named servlet.

Date Last Printed: 9/26/06 Page 239 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.5.5.4. Keys

Figure 139: Table Keys Class Diagram

Any object created to store values for constructing a table is a type of ITableKey.

5.6.5.5.5. Factory

ITableFactory
(from common)

<<Interface>>

CustomTableFactory
(from custom)

MatrixTableFactory
(f rom m at rixTa ble)

ShellTableFactory
(from shellTable)

SummaryTableFactory
(from summaryTable)

Figure 140: Table Factory Class Diagram

The table factory class implements the ITableFactory interface. This is the interface the TableIterator
uses to build the table and populate the rows of the referenced table. It is the responsibility of the table

Date Last Printed: 9/26/06 Page 240 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

factory to create the table by whatever means is appropriate. While not a requirement, currently all tables
are built by a specialized associated ‘builder’ class for each factory. Each builder uses the Producer-
Consumer pattern for populating row results.

5.6.5.5.6. Domain

ICell

+ getColumnNumber()
+ getRowNumber()
+ getType()

(from metadata2)

<<Interface>> Cell
(from metadata2)

ShellHeaderCell
(from metadata2)

ShellLabelCell
(from metadata2)

ShellDataCell
(from metadata2)

MatrixDataCell
(from metadata2)

MatrixLabelCell
(from metadata2)

MatrixGeographyCell
(from metadata2)

DataElement
(from metadata2)

IDataCell

+ getMatrixName()
+ useComma()
+ useTranslate()

(from metadata2)

<<Interface>>

IShell
(from metadata2)

<<Interface>>
IMatrix

(from metadata2)

<<Interfa ce>>

ShellCell
(from metadata2)

CIShell
(from metadata2)

GeoRefTemplate
(from metadata2)

IDataElement

+ getDataType()
+ getDeName()
+ getDsName()
+ getDsspName()

(from metadata2)

<<Interfa ce>>

EconDataset
(from metadata2)

Shell
(from metadata2)

MatrixCell
(from metadata2)

DataElements
(from metadata2)

CIMatrix
(from metadata2)

Matrix
(from metadata2)

ITableTemplate

+ getCharIteration()
+ getDataElements()
+ getDwTableName()

(from metadata2)

<<Interface>>

TableTemplates
(from metadata2)

CQTShell
(from metadata2)

DPShell
(from metadata2)

GCTShell
(from metadata2)

GeographyMa trix
(from metadata2)

GQRShe ll
(from metadat...

GRT Shell
(from metadata2)

IQRShell
(from metadata2)

NPShell
(from metadata2)

PQRShell
(from metadata2)

QT Shell
(from metadata2)

VARShell
(from metadata2)

Figure 141: Table Domain Objects Class Diagram

All metadata objects used for constructing result tables must implement the ITableTemplate interface,
as do Shell (through IShell), Matrix (through IMatrix), EconDataset and GeoRefTemplate.
The tables for a population group use CIShell or CIMatrix, which simply contain a reference to the
actual Shell or Matrix object and a reference to the CharIteration the table will contain.

The GeoRefTemplate is used to download additional geography data, as is done for Geographic
Comparison Tables.

Date Last Printed: 9/26/06 Page 241 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Also note that all objects used to show the columns for the constructed SQL select statement will all be a
type of IDataElement (as well as IDataCell for Shell or Matrix tables).

5.6.5.5.7. Builder

Figure 142: Table Builder Class Diagram

These are the various builder objects used to produce every table result page in AFF. Each acts as the
producer implementing the IProducer interface. These tables are ‘consumed’ by the view adapter/JSP.
Also note that three of the builders (IQRShellTableBuilder, PQRShellTableBuilder and
GQRShellTableBuilder) use an inner class that also implements the IProducer interface. These
tables are divided into ‘sections’ where each group or rows in the section will have special header
describing the data in that section as well as an additional filter predicate to include in the SQL statement.

Date Last Printed: 9/26/06 Page 242 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.5.6. Sequence Diagrams

5.6.5.6.1. Servlet Initialization

infrastructure : TableServlet config :
ServletConfig

 : AbstractTableService

init(config)
getInitParameter(SERVICE_NAME)

getInstance(serviceName)

When a new instance of the servlet is created, the init
parameter SERVICE_NAME is read to instantiate an
instance of the appropriate table service class. This
parameter must specify the full path to the service class.
This service class must implement the interface
gov.census.aff.service.table.ITableService.

Figure 143: TableServlet initialization Sequence Diagram

5.6.5.6.2. Request Processing

infrastructure : TableServlet : TableView : AFFParameters : ITableService : TableIterator : UserSession

processRequest(req, resp)

createKeys(affParameters)

createTables(keys)

TableIterator(ITableFactory,keys)

parseParameters(req)

validateSession(req)

UserSession(httpSession)

AFFParameters(req, userSession)

getViewAdapter(obj)

AFFViewAdapter()

callPage(req, resp)

Figure 144: TableServlet Request Processing Sequence Diagram

This is a skeletal view of the actions performed by the TableServlet class for each request.

The act of instantiating the specialized view adapter is part of the infrastructure defined in the base class
AFFServlet.

Date Last Printed: 9/26/06 Page 243 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The specific ITableService instance will instantiate the correct factory for the TableIterator to
create a table. It is expected that the implementation of the createTables method in the
ITableService class will return quickly and the more time consuming task of building the SQL query,
executing against the data warehouse and populating the table rows will take place in a separate thread.
This will enable faster user feedback in that a page can start to be rendered before the actual table data
is available.

5.6.5.6.3. Table Service for Detailed Tables

caller : DTTableService par :
AFFParameters

 : DTKey

createKeys(par)

DTKey(dataset, matrix, geoEntity[])

getDataset()

getMatrix ()

getGeographyEntity()

getGeoChunkSize(par)

getParameter(_geoSkip)

getChunkSize(par)

getParameter(_skip)

The ChunkSize refers to the number of tables the application
will display on a single page. This value is DT_CHUNK_SIZE
in the LimitCatalog system property fi le.

The '_skip' parameter, if set, will designate the start ing point
in the list of matrix objects to begin creating keys.

NOTE: These two values, along with the size of the matrix
list, will control the 'paging' of tables on this result page.
Similarly, the DT_GEO_CHUNK_SIZE in LimitCatalog and
the '_geoSkip' paremeter, along with the size of geography
list, is needed for paging through the selected geographies
on the result page. This resulting subset of geographies will
be included in each key.

Figure 145: Detailed Tables Service Key Creation Sequence Diagram

Date Last Printed: 9/26/06 Page 244 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 146: Detailed Tables Service Table Creation Sequence Diagram

Date Last Printed: 9/26/06 Page 245 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.5.6.4. Table Service for Quick Tables

caller : QTTableService par :
AFFParameters : QTKey

The ChunkSize refers to the number of tables the application
will display on a single page. This value is QT_CHUNK_SIZE
in the LimitCatalog system property file.

The '_skip' parameter, if set, will designate the starting point
in the list of shell objects to begin creating keys.

NOTE: These two values, along with the size of the shell list,
will control the 'paging' of tables on this result page.

createKeys(par)

getChunkSize(par)

getDataset()
getShell()
getGeographyEntity()

getParameter(_skip)

QTKey(dataset, shell, geography)

Figure 147: Quick Table Service Key Creation Sequence Diagram

Date Last Printed: 9/26/06 Page 246 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 148: Quick Tables Service Table Creation Sequence Diagram

5.6.5.6.5. Table Service for Geographic Comparison Tables

caller : GCTTableService par :
AFFParameters

 : GCTKey

createKeys(par)

getDataset()

getShell()

getGeographyEnt ity()

GCTKey(dataset, shell, geography)

Geographic Comparison Table are always displayed
one at a time, therefore no paging is required.
Also, if the geography can be assumed, as is the
case for the U.S., then the geography parameter to
the key can be null.

Figure 149: Geographic Comparison Tables Key Creation Sequence Diagram

If a geography selection has been made, the GCSRowStubsByGcsBuilder is used to return all of the
geographies contained within the table. These are used to construct the filter for SQL statement as well

Date Last Printed: 9/26/06 Page 247 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

as provide the text (geographic area name and summary level labels) that will appear in the rightmost
column of the resulting table. Below is a sample of the SQL used to return the appropriate row stubs.
For efficiency, the hints ORDERED and USE_NL (nested loops) are used. This is the basic form of the
statement that requires a selected geography (geo_id), an identifying geographic combination
(vtgc_nbr) and the identifier for the content set of all available geographies for this dataset (gcs_id).
select /*+ORDERED USE_NL(gcs gt gdgd)*/ vtgcs.disp_geo_id, vtgcs.disp_ci_nbr,
 vtgcs.stub_type, vtgcs.disp_label, gdgd.disp_gsl_code alt_gsl_code
 from virtual_table_geo_combo vtgc, virtual_table_geo_combo_stub vtgcs,
 virtual_table_geo_combo_stub_p vtgcsp, geo_content_set gcs,
 geo_tree gt, geo_down_gsl_disp gdgd
 where vtgcs.sel_geo_id=? and vtgcs.sel_ci_nbr is null and vtgcs.vtgc_nbr=?
 and vtgcs.sel_bucket_id=gt.bucket_id and gt.tree_id=gcs.tree_id
 and gcs.gcs_id=? and vtgc.vtgc_nbr=vtgcs.vtgc_nbr
 and vtgcsp.vtgc_nbr=vtgcs.vtgc_nbr and vtgcsp.sel_ci_nbr is null
 and vtgcsp.sel_bucket_id=vtgcs.sel_bucket_id
 and gdgd.bucket_id(+)=vtgcs.sel_bucket_id
 and gdgd.gsl_code(+)=substr(vtgcs.disp_geo_id,1,3)
 order by vtgcs.disp_order

Date Last Printed: 9/26/06 Page 248 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 150: Geographic Comparison Tables Row Stub Builder Sequence Diagram

Date Last Printed: 9/26/06 Page 249 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 151: Geographic Comparison Tables Table Creation Sequence Diagram

Date Last Printed: 9/26/06 Page 250 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.5.6.6. Table Services for Economic Detailed Datasets

Figure 152: Economic Detailed Datasets Key Creation Sequence Diagram

Date Last Printed: 9/26/06 Page 251 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 153: Economic Detailed Datasets Table Creation Sequence Diagram

Date Last Printed: 9/26/06 Page 252 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.5.6.7. Table Service for ACS Ranking Tables

caller : GRTTableService par :
AFFParameters

 : GRTKey

createKeys(par)

getDataset()

getShell()

getGeographyEntity ()

GRTKey(ds, shell, geo)

getParameter(_col)

getParameter(_source)

setColumn(column)

setSource(source)

The '_col' and '_source' URL parameters are used to
control the display order of rows in the result table.
_col identifies the column name in the database table.
_source is either DW (data warehouse) or MDR
(metadata repository).

The MDR is used to sort rows alphabetically and the
DW table can sort on the actual ranked value.

Figure 154: Geographic Ranking Tables Service Key Creation Sequence Diagram

The service for creating a GRTTable is identical to GCT, except when the source is DW, an order by
clause is added to the SQL with the column in the request parameter ‘_col’.

Date Last Printed: 9/26/06 Page 253 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.5.7. Data Model

5.6.5.7.1. Shell objects (VIRTUAL_TABLE)

Figure 155: Virtual Table Data Model

Objects implementing the IShell interface will map to a row of data from VIRTUAL_TABLE. Each cell in
the table is defined in VIRTUAL_TABLE_CELL and if that cell references data returned from the
constructed query (VTC_TYPE=D), then a row must exist in VIRTUAL_TABLE_CELL_DATA_CELL and
DATA_CELL to provide additional information as to the data type for that cell and the precision and scale if
it is a number.

The data type for all cells is either CHARACTER, NUMBER or OVERLAY, where overlay is a combination of a
number and an associated character value (FLAG) that provide detail about the number.

Every table must have a box head (VIRTUAL_TABLE_BOX_HEAD) to specify the title for the table.
However, only Economic tables (IQR, PQR, GQR) have sector information (VIRTUAL_TABLE_SECTOR)
and although any table could potential be divided into sections (VIRTUAL_TABLE_SECTION), only
Economic table make use of this style.

Date Last Printed: 9/26/06 Page 254 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.5.7.2. Matrix objects (MATRIX_TABLE)

Figure 156: Matrix Table Data Model

Objects implementing the IMatrix interface will map to a row of data from MATRIX_TABLE. Each cell in
the table is defined in MATRIX_TABLE_CELL and if that cell references data returned from the
constructed query (MTC_TYPE=D), then a row must exist in MATRIX_TABLE_CELL_DATA_CELL and
DATA_CELL to provide additional information as to the data type for that cell and the precision and scale if
it is a number.

The data type for all cells is either CHARACTER or NUMBER.

The matrix tables also use the concept of ‘Jam Values’, where a special meaning is associated with a
specific numeric value in the data returned by the query. When encountered, these values will be
substituted with the matching value in MATRIX_TABLE_VALUE_SUBSTITUTE table. This same
substitution will occur even for virtual table cells that are derived from a matrix cell with this substitution
defined.

Date Last Printed: 9/26/06 Page 255 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.5.7.3. EconDataset objects (DATASET)

Figure 157: Economic Detailed Datasets Data Model

The table produced for an EconDataset corresponds to the result set created by executing the data
warehouse query. There are no label or header cells defined, the cells are implied by the data elements
in that dataset. The data element labels provide the column headers and the data returned from the
query will supply the rows.

5.6.5.8. Future Enhancements
The Custom Tables function was added to AFF in release R8 as a partial, lower-cost step toward offering
users a general AFF tool for querying a dataset. In particular, the R8 focus was on allowing users to
access data in existing demographic datasets using the finer, cell-level granularity rather than the
courser, table-level granularity offered by Detailed Tables. The focus was also on having minimal
changes to the existing data/metadata/code architecture, see Feature DADS00010250.

The longer-term view of a generalized query infrastructure still exists as an "open" work item. One
significant element of that larger view is to make the interface/functionality generic enough to support any
AFF dataset, whether demographic or economic. In many ways, the existing ECFIND functionality
already incorporates the generalized query requirements (e.g., filtering, sorting). However, it does so with
a UI/approach that is different from the demographic CT function, and physically separate. This focus of
this feature is on taking the next step, and making a generic tool.

This would also allow for a refactoring of the current object model. The classes created for implementing
Custom Tables were intentionally designed with as little interaction as possible with existing classes as to
reduce the risk. When this feature is fully implemented, each subsystem can achieve better integration
and code reuse.

Date Last Printed: 9/26/06 Page 256 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.6. Select an Economic Detailed Dataset

5.6.6.1. Functional Description
This document describes the methods available for selecting a detailed dataset from the quinquennial
Economic Census. Detailed datasets from annual economic surveys are chosen on a separate tab in the
main data set page. See [8.2 View Dataset Page] for a description of the Annual Economic Surveys tab.

The application functions associated with selecting an Economic detailed dataset are considerably
different than the dataset selection methods found elsewhere in the application. Each detailed dataset
corresponds to exactly one result table. In fact, the Economic detailed dataset is all that is required to
render a table, unlike other programs where selecting a dataset is only the first step to selecting a table to
display. Therefore, a separate table selection page is not required.

The user can find a specific dataset of interest through three primary selection methods. Selecting the
tab applicable to the desired selection method will display the appropriate page for that method.

5.6.6.1.1. List by Sector
Allows the user to find an Economic dataset of interest by selecting the ‘Economic Census or Survey’ and
then selecting from the sectors in the selected ‘Economic Census or Survey.’ Included in the list is ‘All
Datasets for All Sectors’ option, which, if selected, will provide the user with a complete list of all the
economic datasets.

5.6.6.1.2. Keyword Search
Allows the user enter search terms in order to return a list of relevant datasets.

5.6.6.1.3. Filter by Geography/Industry/Data Item
Allows the user to find a dataset by selecting a geography, industry or product, other dimensions, and/or
data item to filter their dataset selections.

5.6.6.2. Design Approach
All of the objects used to create result tables must implement the ITableTemplate interface. After
selecting a dataset from other programs, a user must chose from a list of Matrix objects (which specify
detailed tables in context DT) or Shell objects (for virtual tables used by QT, NP, GCT, GRT, IQR, GQR
and PQR). As the following diagram illustrates, in addition to the association with Shell objects (IQR,
GQR, PQR), the Economic dataset (EconDataset), in context IBQ, itself implements the
ITableTemplate interface and contains all that is necessary to construct an SQL query that will be
rendered as a table.

Figure 158: EconDataset Class Diagram

Also, in contrast to demographic datasets, an Economic dataset can be displayed in full without the need
to supply any additional filtering criteria. Since no other selections are required, the Select an Economic

Date Last Printed: 9/26/06 Page 257 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Detailed Dataset component defines a path outside the canonical selection path through AFF. When a
dataset is selected, the resulting table is displayed.

Figure 159: Canonical Selection Path with Economic Detailed Datasets

Entry into the Economic dataset selection pages is from the Economic Census tab on the main dataset
page. While there are hundreds of Economic datasets for a census year, it is only the datasets which are
marked as a ‘parent’ that are displayed in this tab. The dataset superset name (DSSP_NAME) of this
parent dataset is all that is required by the select Economic dataset pages.

All of the servlets that define the entry points for selecting an Economic dataset (listed below) use a
common service (EconSearchService) to access the metadata warehouse. The service method will
execute a query and return a list of DataSetNode objects that represent the matching datasets.

5.6.6.3. Named Servlets
There are three named servlets that correspond to the three tabs on the Economic dataset selection
page. Each uses the context prefix fds for saving selections into the HttpSession object. These context
specific parameters are removed whenever the dataset is changed. This happens when entering one of
the economic dataset selection pages from the main dataset page, where the entry points are grouped by
the dataset superset name (DSSP_NAME), i.e. ECN_1997 or ECN_2002, of the parent dataset. Each
specific superset defines exactly one dataset as the parent (DATASET.PARENT_IND=’Y’). The table
below shows the relationship of each named servlet to the implementing class and JSP file.

URI (Named Servlet) Implementation Servlet Class [1] JSP

EconSectorServlet EconSectorServlet /jsp/econ/ibq_ds.jsp

EconKeywordServlet EconKeywordServlet /jsp/econ/ibq_ds_keyword.jsp

FindEconDatasetsServlet FindEconDatasetsServlet /jsp/find_econ_datasets.jsp

[1] All implementation servlet classes are in the gov.census.aff.controller.econ.finddatases package.
Table 44: Named Servlets for Select an Economic Datasets Path

In addition, the FindEconDatasetsServlet uses the Geography, Industry and Subject Selection use cases
to acquire the user selections for filtering the list of datasets.

Date Last Printed: 9/26/06 Page 258 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.6.4. Class Diagrams

5.6.6.4.1. List by Sector

EconBaseServlet

+ init()

(from finddatasets)

PersistentFactory

createObject()
+ getPersistent()

(from persistence)

EconSectorKey
(f rom econ)

EconDataSetKey
(from econ)

EconSectorBuilder

+ getSectorList()

(from finddatasets)

EconSectorFactory

createObject()

(from finddatasets)

EconDataSetBuilder

+ getDataSetList()

(f ro m f in ddatasets)

EconDataSetFactory

+ getDataSetLis t()

(f ro m f in ddatasets)

AFFServlet

+ doGet()
+ doPost()
+ processRequest()

(from common)

<<Http_Servlet>>
IEconSearch

(from finddatasets)

<<Interface>>

EconSectorServlet

+ init()
+ processRequest()

(from finddatasets)

EconSearchService

+ getDataSetList()
+ getSectorList()

(from econ)
<<uses>>

<<instantiates>>

<<uses>>

<<instantiates>>

<<uses>>

<<uses>> <<uses>>

Figure 160: List by Sector Class Diagram

• The EconSectorFactory is-a PersistentFactory, so the list of available sectors is pulled from
the metadata warehouse only once and is cached for later requests.

• Alternately, the list of available datasets for any selected sector is not cached, and would require
access to the MDR database for each request. Since the lists for each sector can be very large and
the MDR tables storing the information are optimized for quick access and retrieval, it was not
deemed necessary to cache this information.

Date Last Printed: 9/26/06 Page 259 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.6.4.2. Keyword Search

EconBaseServlet

+ init()

(from finddatasets)

EconSearchService

+ getDataSetByKeywordList()

(from econ)

EconKeywordKey
(from econ)

EconKeywordFactory

+ getDataSetByKeywordList ()

(from finddatasets)

EconKeywordBuilder

+ getDataSetByKeywordList ()

(from finddatasets)

AFFServlet

+ doGet()
+ doPost()
+ processRequest()

(from common)

<<Http_Servlet>>

IEconSearch
(from finddatasets)

<<Interface>>

<<use s>>

<<instantiates>>

<<uses>>

EconKeywordServlet

+ init()
+ processRequest()

(from finddatasets)

<<uses>>

Figure 161: Keyword Search Class Diagram

• The keyword search uses Oracle Text to search the AFF_META_CENTRAL.SEARCH_TERM column for
matches. When the synonyms checkbox is selected the SYN_SEARCH_TERM column is used. Other
operators can be specified in the properties/context.properties file and effect the way the
query is built. The useStem will prepend the $ symbol to match a term with the same linguistic root
as the search term entered by the user. A fuzzy search will be performed, using the fuzzyScore,
fuzzyWeight and fuzzyResults parameters, when useFuzzy is set to true. Similarly, the
useSoundex can initiate a soundex search and a when a thesaurus is specified; the SYN operator is
added to the search term. Below is a sample of context.properties.
gov.census.aff.service.econ.EconKeywordKey_fds.useStem=true
gov.census.aff.service.econ.EconKeywordKey_fds.useFuzzy=true
gov.census.aff.service.econ.EconKeywordKey_fds.fuzzyScore=67
gov.census.aff.service.econ.EconKeywordKey_fds.fuzzyWeight=true
gov.census.aff.service.econ.EconKeywordKey_fds.fuzzyResults=100
gov.census.aff.service.econ.EconKeywordKey_fds.useSoundex=false
gov.census.aff.service.econ.EconKeywordKey_fds.thesaurus=AFF_SYNS

Date Last Printed: 9/26/06 Page 260 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.6.4.3. Filter by Geography/Industry/Data Item

EconSearchService

+ getDatasetMatches()
+ getDomainValue()
+ getNumberOfDatasetMatches()
+ getSectorList()
+ getSelectedDataItem()
+ getSelectedGeography()
+ getSelectedIndustry()

(from econ)

AFFServlet

+ doGet()
+ doPost()
+ processRequest()

(from common)

<<Http_Servlet>>

FindEconDatasetsServlet

+ init()
+ processRequest()

(from finddatasets)
DatasetMatchServlet

+ init ()
+ processRequest()

(from finddatasets)

<<uses>><<uses>>

MetadataKey
(from metadata2)

DataElementFactory
(from metadata2)

IndustryFactory2
(f rom f inddatasets)

DataItemKey
(from econ)

DatasetMatchKey
(f rom eco n)

DataItemFactory
(from finddatasets)

GeographyItemFactory
(from geography)

GeographyItemBuilder

getGeographyEntity()

(from geography) DataItemBuilder

+ getSelectedDataItem()

(from f inddatasets)

IndustryBuilder

+ getIndustry()

(f rom f inddatasets)

DataElementBuilder

getDataElementDomainValues()

(from metadata2)

DatasetMatchFactory
(f rom f inddatasets)

<<uses>>

<<uses>>

DatasetMatchBuilder

+ getDatasetMatches()
+ getNumberOfDatasetMatches()

(f rom f inddatasets)

<<instant iates>>

<<uses>>

<<instantiates>>

<<uses>>

<<instantiates>>

<<uses>>

<<instantiates>>

<<uses>>
<<uses>>

<<uses>> <<uses>>

<<uses>>

Figure 162: Filter by Geography/Industry/Data Item Class Diagram

Date Last Printed: 9/26/06 Page 261 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.6.5. Sequence Diagrams

5.6.6.5.1. List by Sector
The following sequence diagram shows the interactions necessary for the List by Sector method.

infrastructure : EconSectorServlet : AFFParameters : UserSession : EconSectorViewAdapter : EconSearchService

processRequest(req, resp)

parseParameters(req)

validateSession(req)

UserSession(httpSession)

AFFParameters(req, userSession)

getViewAdapter()

EconSectorViewAdapter()

getSectorList(affParameters)

setSectorList(sectorList)

getDataSetList(affParameters)

setDatasetList(datasetList)

callPage(req, resp)

getSurveyForDsspName(affParameters)

setSurveys(surveys)

Figure 163: List by Sector Sequence Diagram

Date Last Printed: 9/26/06 Page 262 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select sv.sv_name, sviss.ecn_sector_code,
 sviss.ecn_sector_name, sviss.ecn_series_code,
 sviss.ecn_series_name, ds.ds_name, amk.avail_code
from dataset ds, survey_instance_dataset svids,
 survey sv, survey_instance_sector_series sviss,
 aff_meta_central amc, aff_meta_control amk
where ds.dssp_name=? and sv.dssp_name=ds.dssp_name
 and sv.sv_name=svids.sv_name and svids.sv_name=sviss.sv_name
 and svids.svi_name=sviss.svi_name and svids.ds_name=ds.ds_name
 and sviss.ecn_sector_code=ds.ecn_sector_code
 and sviss.ecn_series_code=ds.ecn_series_code
 and ds.ds_name=amc.ds_name and amc.amt_name='DS'
 and amc.amc_id=amk.amc_id
 and sv.sv_name=? and ds.ecn_sector_code=?
order by sv.disp_order, sviss.disp_order, ds.ds_name

The list of DatasetNode objects is created from the results of the above query. The conditions in the
shaded line are optional and would correspond to the Survey and/or Sector that was selected on the
page. The only parameter that is required is the DSSP_NAME of the dataset that was select on the main
dataset page.

caller : EconSearchService : EconDataSetKey : EconDataSetFactory : EconDataSetBuilder : DataSetNode : EconDataSetList

getDataSetList(affParameters)

EconDataSetKey()

getInstance()

getDataSetList(econDataSetKey)
getDataSetList(econDataSetKey)

DataSetNode()

EconDataSetList(dataSetNodes)

setDataSetName(dsName)

setDisplayName(displayLabel)

setAvailable(availCode)

setSurveyName(surveyName)

setSectorID(sectorID)
Executes the above query and
creates a DataSetNode object for
each of the returned rows.
The list of DataSetNode objects is
wrapped in the EconDataSetList.

Figure 164: Get Dataset List Sequence Diagram

Date Last Printed: 9/26/06 Page 263 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.6.5.2. Keyword Search

infrastructure : EconKeywordServlet : AFFParameters : UserSession : EconSearchService : EconKeywordViewAdapter

processRequest(req, resp)

parseParameters(req)

validateSession(req)

UserSession(httpSession)

AFFParameters(req, userSession)

getViewAdapter()

EconKeywordViewAdapter()

getDataSetByKeywordList(affParameters)

setDatasetLis t(datasetList)

callPage(req, resp)

getSurveyForDsspName(affParameters)

setSurveys(surveys)

Figure 165: Keyword Search Sequence Diagram

select sv.sv_name, sviss.ecn_sector_code,
 sviss.ecn_sector_name, sviss.ecn_series_code,
 sviss.ecn_series_name, ds.ds_name, amk.avail_code
from dataset ds, survey_instance_dataset svids,
 survey sv, survey_instance_sector_series sviss,
 aff_meta_central amc, aff_meta_control amk
where ds.dssp_name=? and sv.dssp_name=ds.dssp_name
 and sv.sv_name=svids.sv_name and svids.sv_name=sviss.sv_name
 and svids.svi_name=sviss.svi_name and svids.ds_name=ds.ds_name
 and sviss.ecn_sector_code=ds.ecn_sector_code
 and sviss.ecn_series_code=ds.ecn_series_code
 and ds.ds_name=amc.ds_name and amc.amt_name='DS'
 and amc.amc_id=amk.amc_id
 and contains(amc.search_term,?)>0
 and sv.sv_name=?
order by sv.disp_order, sviss.disp_order, ds.ds_name

The list of DatasetNode objects is created from the results of the above query. The condition in the
shaded line is optional and would correspond to the Survey that was selected on the page. The required

Date Last Printed: 9/26/06 Page 264 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

parameters are for the search term that was entered on the page and DSSP_NAME of the dataset that was
select on the main dataset page.

caller : EconSearchService : EconKeywordKey : EconKeywordFactory : EconKeywordBuilder : DataSetNode : EconDataSetList

getDataSetByKeywordList(affParameters)

EconKeywordKey()

getInstance()

getDataSetByKeywordList(econKeywordKey)

getDataSetByKeywordList(econKeywordKey)

DataSetNode()

EconDataSetList(datasetNodes)

setSurveyName(surveyName)

setSearchTerm(searchTerm)

setSynonymSelected(synonymSelected)

setDataSetName(dsName)

setDisplayName(displayLabel)

setAvailable(availCode)

Executes the above query and
creates a DataSetNode object for
each of the returned rows.
The list of DataSetNode objects is
wrapped in the EconDataSetList.

Figure 166: Get Dataset by Keyword List Sequence Diagram

Date Last Printed: 9/26/06 Page 265 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.6.5.3. Filter by Geography/Industry/Data Item

infrastructure : FindEconDatasetsServlet : AFFParameters : UserSession : FindEconDatasetViewAdapter : EconSearchService

processRequest(req, res)

parseParameters(req)

validateSession(req)

UserSession(httpSession)

AFFParameters(req, userSession)

getViewAdapter()

AFFViewAdapter()

getSurveyForDsspName(affParameters)

setSurveys(surveys)

getSelectedGeography(affParameters)

setGeoEntity(geoEntity)

getSelectedIndustry(affParameters)

setIndustry(industry)

getSelectedDataItem(affParameters)

setDataItem(dataItem)

getDomainValue(dataItem, dsName, loc)

setDomainValue(domainValue)

getNumberOfDatasetMatches(affParameters)

setNumOfMatches(numOfMatches)

getDatasetMatches(affParameters)

setDatasets(datasetMatches)

callPage(req, resp)

Figure 167: Filter by Geography/Industry/Data Item Sequence Diagram

Date Last Printed: 9/26/06 Page 266 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select sv.sv_name, sviss.ecn_sector_code,
 sviss.ecn_sector_name, sviss.ecn_series_code,
 sviss.ecn_series_name, ds.ds_name, amk.avail_code
from dataset ds, survey_instance_dataset svids,
 survey sv, survey_instance_sector_series sviss,
 aff_meta_central amc, aff_meta_control amk
where ds.dssp_name=? and sv.dssp_name=ds.dssp_name
 and sv.sv_name=svids.sv_name and svids.sv_name=sviss.sv_name
 and svids.svi_name=sviss.svi_name and svids.ds_name=ds.ds_name
 and sviss.ecn_sector_code=ds.ecn_sector_code
 and sviss.ecn_series_code=ds.ecn_series_code
 and ds.ds_name=amc.ds_name and amc.amt_name='DS'
 and amc.amc_id=amk.amc_id
 and sv.sv_name=?

The following condition is used to filter by a selected data item:
 and exists
 (select 'X' from dataset_data_element dde
 where dde.de_name=? and dde.ds_name=ds.ds_name
 and dde.de_dssp_name=ds.dssp_name)

The following condition is used to filter by a selected dimension:
 and exists
 (select 'X' from dataset_data_element_value ddv
 where ddv.de_name=? and ddv.dsdev_value=?
 and ddv.de_dssp_name=ds.dssp_name
 and ddv.ds_name=ds.ds_name and ddv.avail_code='Y')

The following condition is used to filter by a selected geography:
 and exists
 (select 'X' from geo_tree_content gtc,geo_treenode gtn
 where gtn.geo_id=? and gtc.gcs_id=ds.gcs_id
 and gtn.treenode_id=gtc.treenode_id)

The following condition is used to filter by a selected industry:
 and exists
 (select 'X' from ib_tree_content itc
 where itc.treenode_id=? and itc.ds_name=ds.ds_name
 and itc.avail_code='Y')

And finally:
order by sv.disp_order, sviss.disp_order, ds.ds_name

The list of DatasetNode objects is created from the results of the above query. The condition in the
shaded line is optional and would correspond to the Survey that was selected on the page. Any other
filters (geography, industry, dimension or data item) set on the page would result in a sub-query added to
the where clause predicate. The only parameter that is required is the DSSP_NAME of the dataset that
was select on the main dataset page.

Date Last Printed: 9/26/06 Page 267 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

caller : EconSearchService : DatasetMatchKey : DatasetMatchFactory : DatasetMatchBuilder : DataSetNode

getDatasetMatches(affParameters)

getSelectedDataItem(affParameters)

DatasetMatchKey()

setDataItem(dataItem)

getDomainValue(affParameters)

setDomainValue(domainValue)

setGeoEntity(geoEntity)

getSelectedGeography(affParameters)

getSelectedIndustry(affParameters)

setIndustry(industry)

getDatasetMatches(datasetMatchKey)
getDatasetMatches(datasetMatchKey)

DataSetNode()

getDataSetName()

getDisplayName()

setAvailable(availableCode)

Executes the above query and
creates a DataSetNode object for
each of the returned rows.
The list of DataSetNode objects is
wrapped in the EconDataSetList.

5.6.6.5.3.1. Dataset Match Servlet (Count Layer)
Another servlet is required to update the count of matched datasets for the additional filter by Geography,
Industry, Dimension or Data Item pages. This servlet merely populates an HTML ‘layer’ on the selection
page, with the new count. The layer, called ‘matches’, is defined as:
<div id="matches" style="position:relative; visibility:visible;">
</div>

The DatasetMatchServlet will construct the one line to be inserted into this layer. For Internet Explorer:
document.getElementById('matches').src = "DatasetMatchServlet?"+<new filter>;

and for Netscape

Date Last Printed: 9/26/06 Page 268 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

document.layers["matches"].src = "DatasetMatchServlet?"+<new filter>;

The <new filter> name/value pair will be the geo_id=geoId, industry=treenodeId,
filter=deName;eq;value or data_item=deName of what was selected.

infrastructure : DatasetMatchServlet : EconSearchService : DatasetMatchesViewAdapter : AFFParameters : UserSession

processRequest(req, res)

parseParameters(req)

validateSession(req)

UserSession(httpSession)

AFFParameters(req, userSession)

getViewAdapter()

DatasetMatchesViewAdapter()

getNumberOfDatasetMatches(affParameters)

setNumOfMatches(numOfMatches)

Figure 168: Dataset Match Servlet Sequence Diagram

The query joins with the same tables and uses the same where clause predicate as the Filter by
Geography/Industry/Data Item above. However, the select-list is modified to return both a count of all
datasets and the ones currently available.
select count(*) row_count,
 sum(decode(amk.avail_code,'Y',1,0)) avail_count
…

Date Last Printed: 9/26/06 Page 269 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.6.6. Data Model

Figure 169: Data Model

The purpose is to select rows from the DATASET table (in center). All of the other supporting tables
show the relationships of the various filtering options as they filter the rows in the DATASET table.

• SURVEY, SURVEY_INSTANCE and SURVEY_INSTANCE_DATASET not only restrict the datasets to
a specific survey but also provide the metadata and display labels for grouping the datasets by
the corresponding sector.

When filtering on a specific industry code (in table IB_TREE_CONTENT), the application uses the
TREENODE_ID instead of the actual code itself. This is required to uniquely identify the selection since
the same code can exist across different industry types.

5.6.7. Custom Tables

5.6.7.1. Functional Description
The Custom Tables function was added to AFF in release R8 as a partial, lower-cost step toward offering
users a general AFF tool for querying a dataset. In particular, the R8 focus was on allowing users to
access data in existing demographic datasets using the finer, cell-level granularity rather than the
coarser, table-level granularity offered by Detailed Tables. The focus was also on reusing as much of the
existing model as possible with minimal changes to the existing data, metadata and code architecture.

Date Last Printed: 9/26/06 Page 270 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The Custom Tables feature allows the user to select elements from multiple tables within a dataset to
create an ad hoc cross tab. This is the only subsystem within the application that lets users join data
warehouse tables to produce results. Currently, this feature only allows joining tables in the same
dataset; it does not support selecting elements across years, programs or datasets.

5.6.7.2. Design Approach
The Custom Table follows the same design patterns as outlined in the Create a Table document.

Custom Table component requires no new table types. This merely presents existing Matrix table data in
an alternate way. The object model was extended to include two interfaces, IDataElement and
ITableTemplate. The existing domain objects were modified to implement these two interfaces. Although
the object model will support joining any type of table, rules within the code only allow joins of Matrix
Tables that all share the same Master Table (a Master Table is the table used to derive the full
geographic content set for a dataset).

The IDataElement interface represents a data value and the ITableTemplate interface represents a
metadata object that references data warehouse tables. The Custom Table subsystem uses these
interfaces to construct an SQL query and populate the table results. By using these two interfaces, all
objects used to produce table results can also be rendered by the Custom Table infrastructure. In fact,
the database format download, which is used for Quick tables, Geographic Comparison Tables, etc. is
implemented by these Custom Table classes.

All classes that represent the metadata for a table must implement the ITableTemplate interface. These
include Matrix and CIMatrix (through the interface IMatrix), Shell and CIShell (through the interface IShell)
and classes EconDataset and GeoRefTemplate. ITableTemplate contains a reference to the
DataElements collection class, which will contain all of the available elements, each object
implementing IDataElement, in the data warehouse table.

5.6.7.2.1. Data Element Selection
When data elements are selected, the name of the element is appended to the name of the Matrix table
that contains that element (i.e. DEC_2000_SF1_U_P001.P001001). The Matrix name is used to
determine the data warehouse table to include in the query.

All items which are visible in the Matrix (Detailed) table can be selected for display in the Custom table. A
special condition is applied for American Community Survey (ACS) data elements. ACS applies a Lower
Bound/Upper bound to each estimate. Since these values only have meaning when taken together, a
user can only select the estimate in Custom Tables. However, when the resulting table is displayed, they
will have the option to also display these Upper and Lower Bound values. AFF designates these
supporting values as ‘children’ of the corresponding estimate. The SQL Query for Data Element
Selection, shown below, is used by the application to populate the list of data elements available for
selection.

Date Last Printed: 9/26/06 Page 271 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

SELECT DECODE(mtc1.content,null,'',mtc1.mt_name||'.'||mtc1.content) de_name,
 mtc1.mtc_row_nbr, mtc1.mtc_col_nbr, mtc.content, mtc.fmt_indnt_level,
 decode(mtc1.content,null,'N','Y') is_selectable
FROM matrix_table_cell mtc, matrix_table_cell mtc1,
 matrix_table_cell_data_cell mtcdc, data_cell dc
WHERE mtc.mt_name=? AND mtc.mtc_type='L' AND mtc.mt_name=mtc1.mt_name(+)
 AND mtc.mtc_row_nbr=mtc1.mtc_row_nbr(+) AND mtc1.mtc_type(+)='D'
 AND mtc1.mt_name=mtcdc.mt_name AND mtc1.mtc_row_nbr=mtcdc.mtc_row_nbr
 AND mtc1.mtc_col_nbr=mtcdc.mtc_col_nbr AND mtcdc.dc_id=dc.dc_id
 AND dc.disp_ind='Y' AND dc.parent_dc_id is null
UNION
SELECT DECODE(mtc1.content,null,'',mtc1.mt_name||'.'||mtc1.content) de_name,
 mtc_row_nbr, mtc_col_nbr, DECODE(mtc1.content,null,'',mtc1.content) content,
 mtc1.fmt_indnt_level, 'N' is_selectable
FROM matrix_table_cell mtc1
WHERE mtc1.mt_name=? AND mtc1.mtc_type='L' AND mtc1.mtc_row_nbr NOT IN
 (SELECT mtc3.mtc_row_nbr FROM matrix_table_cell mtc3
 WHERE mtc3.mt_name=mtc1.mt_name AND mtc3.mtc_type='D') AND mtc1.mtc_col_nbr=
 (SELECT min(mtc_col_nbr) FROM matrix_table_cell WHERE mt_name=mtc1.mt_name)
ORDER BY 2, 3

Table 45: SQL Query for Data Element Selection

5.6.7.2.2. Outer-Join SQL Result Query
There are instances where a data row for a geography can be missing from certain tables. Such is the
case for PCT series tables in the Decennial Census where Block Groups and Blocks are not available.
Data for a Characteristic Iteration (Race and Ethnic Group or Ancestry Group) can also be missing in the
data warehouse table when the population of the selected iteration is less than the threshold.

The data warehouse query uses an ‘outer-join’ to ensure that all data that is available will be present in
the result set. The Master Table will always be included in the query, regardless of whether a data
element from that table has been selected for display. Since this was the table used to derive the full
geographic content set, it can be assured that every geography that is available in the current dataset, is
also present in this table. This will act as the ‘base’ table for the outer-join operation.

For datasets supporting Characteristic Iterations, it also provides the full set of geographies (geo_id) for
the subquery that will produce the complete list of geography and characteristic iteration (chariter)
combinations. The query below shows the SQL for Characteristic Iteration Outer-Join subquery that is
included as the base table.
(SELECT gc.geo_id geo_id, ci.ci_nbr chariter
 FROM <Master-Table-Name> gc, dataset_char_iteration ci
 WHERE gc.chariter=? AND ci.ds_name=?) MASTER_TABLE

Master-Table-Name is from the MDR column GEO_CONTENT_SET.SRC_TABLE_NAME

gc.chariter=? is the default characteristic iteration number in DATASET.DFLT_CI_NBR

ci.ds_name=? is the name of the currently selected dataset, as in DATASET.DS_NAME
Table 46: SQL for Characteristic Iteration Outer-Join

The query is built according to the SQL Template for Custom Tables, shown below. Elements within
braces are optional.

Date Last Printed: 9/26/06 Page 272 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

SELECT MASTER_TABLE.GEO_ID, [MASTER_TABLE.CHARITER,]
 comma-delimited-select-list
FROM Mater-Table-Name-or-Subquery MASTER_TABLE
 [, table-1.data-element][, table-n.data-element]...
WHERE MASTER_TABLE.GEO_ID in (comma-delimited-geo-id-list)
 AND MASTER_TABLE.CHARITER='selected-iteration-number'
 [
 MASTER_TABLE.GEO_ID=table-1.GEO_ID(+)
 [AND MASTER_TABLE.CHARITER=table-1.CHARITER(+)]
 [AND MASTER_TABLE.GEO_ID=table-n.GEO_ID(+)
 [AND MASTER_TABLE.CHARITER=table-n.CHARITER(+)]
]...
]

Table 47: SQL Template for Custom Tables

5.6.7.2.3. Hints
The potential for many tables to be included in the query can have negative effect on performance. In
order to mitigate these circumstances, two optimizer hint is added to each query.
/*+ ORDERED USE_NL(Table-Name) */

The ORDERED hint specifies that the exact join order to be used is the order that the tables appear in the
FROM clause (where the Master-Table is always listed first).

The USE_NL hint (use Nested-Loops) causes Oracle to join each specified table to another row source
with a nested loops join, using the specified table as the inner table. All of the Data Warehouse tables
have the same Primary-Key, GEO_ID and the iteration (CHARITER), if supported. This hint ensures that
the optimizer always chooses the correct plan.

5.6.7.3. Named Servlets

5.6.7.3.1. Geography Selection
The Custom Table path uses the standard geography selection servlets. The named servlets specific to
this path are listed below and their behavior is further defined in the section 5.6.3 Geography Selection.

Named Servlet Type
CTGeoSearchByListServlet Geography search by list servlet

CTGeoSearchByKeywordServlet Geography name search

CTGeoAddressServlet Geography search by user-specified street address

CTSearchMapFramesetServlet Geography selection by map interface

CTGeoSearchByRelationshipServlet Geographies contained within other geographies (Geo-in-
Geo)

Table 48: Geography Selection Named Servlets

5.6.7.3.2. Data Element Selection
The servlet used to select data elements for Custom Tables are described in the section 5.6.4 Subject
Selection. All methods for selecting elements are handled by the CustomTableServlet.

A user selects elements by first selecting a matrix table. The matrix table can be selected from the list of
all tables, by traversing the subject tree of matrix tables or performing a keyword search for the table.
When a matrix table is chosen, the user can then select from the list of all elements it contains.

Optionally, an element can be selected directly through a keyword search.

Date Last Printed: 9/26/06 Page 273 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.7.3.3. Filter on Data Element
Only data element that are selected for display can be used for applying filters to the result set. The
named servlet specific to Custom Tables uses the same implementation as Economic Detailed Datasets.

Named Servlet: CTFilter

Servlet Class: gov.census.aff.controller.table.ColumnsServlet

JSP File Name: /jsp/table/CTFilter.jsp

View Adapter: gov.census.aff.viewAdapter.table.QueryView

As with Economic datasets, the filter page performs a validity check to ensure that only numeric data is
entered to filter on numeric data items. The MDR table DATA_CELL defined the data type for each item.

5.6.7.3.4. Table Result
Named Servlet: CTTable

Context: ct

Servlet Class: gov.census.aff.controller.table.TableServlet

Property Bundle: ctable.properties

JSP File Name: /jsp/table/CTTable.jsp

Service Class: gov.census.aff.service.table.CustomTableService

View Adapter: gov.census.aff.viewAdapter.table.CustomTableView

Session Manager: gov.census.aff.session.CTSessionManager

5.6.7.4. Class Diagrams

EconDataset
(from metadata2)

IMatrix
(from metadata2)

<<Interface>>
IShell

(from metadata2)

<<Interface>>

ITableTemplate
(from m etadata2)

<<Interface>>

CIMatrix
(f ro m m etada ta 2)

Matrix
(from metadata2)

CIShell
(from metadata2)

Dataset
(from metadata2)

Shell
(f rom metadata2)

0..*0..*

GeoRefTemplate
(from metadata2)

Figure 170: ITableTemplate Class Diagram

All metadata object used in AFF to construct result table will implement the ITableTemplate interface.

Date Last Printed: 9/26/06 Page 274 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 171: IDataElement Class Diagram

Every ITableTemplate object will contain a reference to all data elements contained in the table.

Date Last Printed: 9/26/06 Page 275 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.7.5. Sequence Diagrams

5.6.7.5.1. Key Creation Service for Custom Tables

Figure 172: Custom Tables Service Key Creation Sequence Diagram

This diagram describes the steps involved in creating the key used to produce a Custom Table. All of the
user selections, in addition to any parameters the application requires for page navigation, are combined
into one key.

Date Last Printed: 9/26/06 Page 276 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.7.5.2. Table Creation Service for Custom Tables

Figure 173: Custom Tables Service Table Creation Sequence Diagram

The CustomTable object is returned before any rows for the table have been populated. A worker thread
is used to execute the SQL query, format the result set data and build a table row object. This object is
then added to a Vector which is shared by both threads.

Date Last Printed: 9/26/06 Page 277 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.7.6. Data Model

Figure 174: Matrix Table Data Model used to produce Custom Tables

Custom Tables are built from the metadata used to support Matrix Tables. Only elements that represent
data warehouse columns are used. These have MATRIX_TABLE_CELL.MTC_TYPE=’D’ and have rows
in MATRIX_TABLE_CELL_DATA_CELL/DATA_CELL to further describe the data type.

5.6.8. Download a Table

5.6.8.1. Functional Description
The download function allows the user to save the tables that they have selected onto their own
computer. The download function is available for each path. The interface may differ slightly depending
on the path that the user has selected, the number of tables selected and the width of the tables. In
general, there are two methods to download, the presentation download and the database ready
download. The user must choose between these two methods in the Select Format section of the
download page.

The presentation download provides the user with the table just as they see it on the screen. This
includes titles, headnotes, and footnotes so that the user can take this table and insert it in other
documents. If the user's result tables must be presented in multiple pages, the user will have an
additional choice of downloading only the tables and geographies on the screen or all tables and
geographies they have selected.

The database ready download provides the user with the data rows only, so that it is ready to load into a
database. The titles, headnotes, and footnotes have all been stripped from the file and are included in a
separate metadata file. The database ready option will always download all of the table and geography
data that the user has selected.

The download option is only available from a table result page. Figure 175 shows the position of the
download component in the AFF table creation path.

Date Last Printed: 9/26/06 Page 278 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Select a
Program

Select a
Geography

Select
Tables

Select
Population

Groups
Result(s)Select a

Data Set

Figure - Download A Table Selection Path
Version - 1.0 Date - 2005-05-26

Download

Save Query

Select an
Economic Detailed Data Set

Figure 175: Download a Table in Canonical Selection Path

A file is then saved using the browser's (e.g., Internet Explorer) download mechanism.

5.6.8.2. Design Approach
All table downloads use the gov.census.aff.controller.dataextract.DBDownloadServlet
controller. This controller utilizes the services implemented in the table creation subsystem to build the
required tables. The formats available for download are defined as sub-packages within the
gov.census.aff.controller.formatter package. Each subsystem within AFF defines its own
named servlets to perform the download functions. Table 49 lists the different download formats that are
available to each type of table produced in AFF.

Format DT QT GCT CT ADP MYP NP ST SP IP RT GQR IQR PQR IBQ

Comma Delimited [P] X X X X X X X X X X X X X

Tab Delimited [P] X X X X X X X

Rich Text [P] X X X X X X X X X X

Excel [P] X X X X X X

Comma Delimited [D] X X X X

Excel [D] X X X X
[D] Database Compatible Format (multiple files bundled and compressed into one ZIP file).
[P] Presentation Format (one file)
Table 49: Download Format by Table Types

5.6.8.3. Named Servlets
Both the desired service class and formatter are specified as initialization parameters to the named
servlet as shown in the following tables.

In the following tables, the formatter classes are found in the

gov.census.aff.controller.formatter

package and the service classes are found in the

gov.census.aff.service.table

package (.csv-CSV*, .xls-Excel*, .rtf-RTF*).
Type Servlet Name Formatter Class Service Class
ADP ADPDownload.csv CSVPresentationFormatter QTTableService

ADP ADPRTFPresentationDownload.rtf RtfFormatter QTTableService

ADP ADPXLSPresentationDownload.xls ExcelFormatter ADPTableService

CT CTCSVDBDownload.zip CSVFormatter DBDownloadTableService

CT CTXLSDBDownload.zip ExcelFormatter DBDownloadTableService

Date Last Printed: 9/26/06 Page 279 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Type Servlet Name Formatter Class Service Class
DT DTDownload.csv CSVPresentationFormatter DTTableService

DT DTDownload.lst TSVPresentationFormatter DTTableService

DT DTRTFPresentationDownload.rtf RtfFormatter DTTableService

DT DTXLSPresentationDownload.xls ExcelFormatter DTTableService

DT DTCSVDBDownload.zip CSVFormatter DBDownloadTableService

DT DTXLSDBDownload.zip ExcelFormatter DBDownloadTableService

GCT GCTDownload.csv CSVPresentationFormatter GCTTableService

GCT GCTDownload.lst TSVPresentationFormatter GCTTableService

GCT GCTRTFPresentationDownload.rtf RtfFormatter GCTTableService

GCT GCTXLSPresentationDownload.xls ExcelFormatter GCTTableService

GCT GCTCSVDBDownload.zip CSVFormatter GCTDownloadService

GCT GCTXLSDBDownload.zip ExcelFormatter GCTDownloadService

GQR GQRDownload.csv CSVPresentationFormatter GQRTableService

GQR GQRDownload.lst TSVPresentationFormatter GQRTableService

GRT GRTDownload.csv CSVPresentationFormatter GRTTableService

GRT GRTRTFPresentationDownload.rtf RtfFormatter GRTTableService

GRT GRTXLSPresentationDownload.xls ExcelFormatter GRTTableService

IBQ IBQDownload.csv CSVPresentationFormatter IBQTableService

IBQ IBQDownload.lst TSVPresentationFormatter IBQTableService

IP IPDownload.csv CSVPresentationFormatter IPTableService

IP IPRTFPresentationDownload.rtf RtfFormatter IPTableService

IP IPXLSPresentationDownload.xls ExcelFormatter IPTableService

IQR IQRDownload.csv CSVPresentationFormatter IQRTableService

IQR IQRDownload.lst TSVPresentationFormatter IQRTableService

MYP MYPDownload.csv CSVPresentationFormatter QTTableService

MYP MYPRTFPresentationDownload.rtf RtfFormatter QTTableService

MYP MYPXLSPresentationDownload.xls ExcelFormatter MYPTableService

MYP MYPXLSPresentationDownloadAll.xls ExcelFormatter MYPTableServiceAll

NP NPRTFPresentationDownload.rtf RtfFormatter NPTableService

PQR PIQRDownload.csv CSVPresentationFormatter IQRTableService

PQR PIQRDownload.lst TSVPresentationFormatter IQRTableService

PQR PQRDownload.csv CSVPresentationFormatter PQRTableService

PQR PQRDownload.lst TSVPresentationFormatter PQRTableService

QT QTDownload.csv CSVPresentationFormatter QTTableService

QT QTDownload.lst TSVPresentationFormatter QTTableService

QT QTRTFPresentationDownload.rtf RtfFormatter QTTableService

QT QTXLSPresentationDownload.zip ExcelFormatter QTTableService

QT QTCSVDBDownload.zip CSVFormatter DBDownloadTableService

QT QTXLSDBDownload.zip ExcelFormatter DBDownloadTableService

ST STDownload.csv CSVPresentationFormatter STTableService

ST STRTFPresentationDownload.rtf RtfFormatter STTableService

ST STXLSPresentationDownload.xls ExcelFormatter STTableService

Date Last Printed: 9/26/06 Page 280 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Table 50: Download a Table Named Servlets with Corresponding Formatter and Service Classes

Each formatter class specifies the content type of the data stream it will produce for download. This
content type is sent as part of the HTTP header at the beginning of the stream of data. Table 51 below
shows the content type reported by each of the formatter classes.

Formatter Class Content-Type (MIME) Notes
CSVFormatter text/comma-separated-values
CSVPresentationFormatter text/comma-separated-values
TSVPresentationFormatter text/tab-separated-values
RTFFormatter application/rtf
ExcelFormatter application/vnd.ms-excel
CSVFormatter multipart/x-zip Multiple files in ZIP file

archive
ExcelFormatter multipart/x-zip Multiple files in ZIP file

archive
Table 51: Content-Type for Formatter Classes

5.6.8.4. Class Diagrams

IFormatter

+ close()
+ format()
+ getContentType()

(from fo rmatter)

<<Interface>>

PresentationFormatter
(from csv)

CSVPresentationFormatter
(from csv)

CSVFormatter
(f rom csv)

TSVPresentationFormatter
(from csv)

ExcelFormatter
(from xls)

RtfFormatter
(f rom rtf)

DBDownloadServlet

+ downloadGeographicContent()
+ getFormatter()
+ init()
+ processRequest()
- downloadAdditionalFi les()
- downloadStatisticalContent()

(from dataextract) ITableService

+ createKeys()
+ createTables()

(f rom tabl e)

<<Interface>>
_service

AbstractTableService

+ getInstance()

(from table)

QTTableService
(from table)

DTTableService
(f ro m tabl e)

GCTTableService
(from ta ble)

CustomTableService
(f rom tabl e)

DBDownloadTableService

+ getAdditionalFiles()
+ getGeographicContent()

(from table)

GCTDownloadService

- getRowStubs()
- getStubGeoEntities()

(from table)

GQRTableService
(from table)

IBQTableService
(from ta bl e)

IQRTableService
(from table)

NPTableService
(f ro m tabl e)

<<instantiates>>

Figure 176: DBDownloadServlet Class Diagram

The context specific services are used to produce the table ‘as-viewed’ in the browser. These comprise
the services required for the presentation download options.

DBDownloadServlet holds a reference to an instance of an ITableService class and a class
implementing IFormatter. The table service builds the required keys and returns a TableIterator

Date Last Printed: 9/26/06 Page 281 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

for managing the series of result tables. The appropriate table builder will construct and execute the SQL
and package the results in an AFF ITable object.

All database ready download are handled by the DBDownloadTableService. This service inherits its
functionality from the CustomTableService class, but adds methods to return additional files and
geographic content files to the download stream. The GCTDownloadService further extends this
function for Geographic Comparison tables by adding methods to convert the metadata returned as row
stubs into GeographicEntity objects, which are used by the CustomTableService to build the SQL.

5.6.8.5. Sequence Diagrams

5.6.8.5.1. Servlet Initialization

infrastructure : DBDownloadServlet config :
ServletConfig

 : AbstractTableService

init(config)

getInitParameter(HAS_GEO_CONTENT)

getInitParameter(HAS_ADDITIONAL_FILES)

getInitParameter(FILE_EXTENSION)

getInitParameter(CONTEXT)

getInitParameter(USE_PRESENTATION_FORMAT)

getInitParameter(USE_ZIP)

getInitParameter(SERVICE_NAME)

getInstance(serviceName)

getInitParameter(FORMATTER_NAME)

The initialization parameters HAS_GEO_CONTENT
and HAS_ADDITIONAL_FILES are for database
compatible download (DBDownloadTableService) and
require the contents to be packaged as a ZIP file.

Service class (SERVICE_NAME) must implement
the ITableService interface.

Each formatter class (FORMATTER_NAME) must
implement the IFormatter interface.

Figure 177: DBDownloadServlet initialization

When a download servlet is initialized, all known parameters are stored in instance variables. The class
referred to by the SERVICE_NAME (implementing ITableService) is instantiated once and will be used
throughout the lifetime of this servlet. The formatter class will require a new instance at each invocation.

Date Last Printed: 9/26/06 Page 282 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.8.5.2. Instantiate New Formatter Class

caller : DBDownloadServlet formatter :
Class

 : IFormatter

getFormatter()

forName(formatterName)

newInstance()

instance created

setResourceLocator(this)

A new instance of the class implementing the IFormatter
interface is created for each request to the
DBDownloadServlet.

DBDownloadServlet implements the IResourceLocator
interface for returning a Uniform Resource Locator (URL)
to any image or link contained in the text within the table.

Figure 178: DBDownloadServlet getFormatter Sequence Diagram

Creates a new instance of the class referenced in the init parameter FORMATTER_NAME. This class must implement the
IFormatter interface.

Date Last Printed: 9/26/06 Page 283 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.8.5.3. Process Request

Figure 179: DBDownloadServlet Request Processing Sequence Diagram

The HTTP header in the output steam is prepared with the content type returned from the formatter class.
If the table service is an instance of the DBDownloadTableService (or a subclass of), additional files
including geographic content are included in the stream. For this condition, the stream must be capable
of handling multiple file entries (i.e. ZipOutputStream).

The standard table creation functions are used to produce the table(s) that is/are sent to the
IFormatter instance for addition to the stream.

Date Last Printed: 9/26/06 Page 284 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.8.5.4. Geographic Content File

Figure 180: DBDownloadServlet getGeographicContent Sequence Diagram

In order to return geographic information, the metadata warehouse must be queried. Therefore, these
results are cached using the AFF Persistence layer so later queries including the same geographic data
will not use database resources.

Date Last Printed: 9/26/06 Page 285 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.8.5.5. Additional Files

Figure 181: DBDownloadServlet getAdditionalFiles Sequence Diagram

The additional files are gathered by querying the file system directly, no database access is required.

All files are stored relative to the document root with dataset specific files in an explicit dataset directory,
where the dataset name is also the directory name.

5.6.8.6. Data Model
Apart from metadata used by the table creation (shown in Data Model section of the Create a Table
document), the database download function includes information about the geographies in the
downloaded table. This information includes the various FIPS code identifiers for a geographic area.
This information is stored in the AFF metadata warehouse in a series of tables as illustrated in Figure
182.

Date Last Printed: 9/26/06 Page 286 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 182: Data Model for Geographic Content

The application uses the geo_Down procedure in the NSGeo package for querying these tables. Only
subsets of FIPS codes are relevant at a given geographic summary level (GSL_CODE). For example, a
state only needs the state code itself for identification, whereas a county would require the county code
as well as the code of the state in which the county resides. This procedure returns the superset of all
column names required to uniquely identify an area for every geographic summary included in the table.

The GEO_REF_COL_NAME (in GEO_DOWN_GSL) must match an actual column in the GEO_REF table. This
list of columns name returned from the procedure is used to construct the select list for the query against
the GEO_REF table to acquire the actual FIPS codes.

5.6.9. Related Items

5.6.9.1. Functional Description
The related items subsystem allows users of AFF to quickly view products, datasets, tables, or thematic
maps which are related to the current table or map being displayed.

Two items are related if they share a common subject. For example, “Population Density” is one of the
subjects for the Person per Square Mile thematic map. A user on the Person per Square Mile thematic
map can easily jump to products, such as GCTs, that share the subject “Population Density”.

By clicking on links provided to the user in the related items pop-up window, users can update the main
browser window with the new table or thematic map, while preserving their related item search if they
would like to click on a different table or thematic map.

5.6.9.2. Design Approach
The related items subsystem relies heavily on the AFF defined context for a table or thematic map. This
context is driven by an init parameter in web.xml.

5.6.9.2.1. DEC, ACS, PEP Related Items
There are two parts to the related items subsystem for Decennial, ACS, and PEP programs. The first part
involves retrieving all of the AFF subjects that are assigned to the current table or thematic map being
displayed. The second part is the retrieval of related item results based on the user’s context and subject
selections.

Users are required to make two choices before they are presented with a list of related item links. First,
users must choose which tables or thematic maps they would like to see related items for. This list of
table types and thematic maps is not dependent on the current context of the user’s request. Next, users
must choose which subjects they would like to search for.

Date Last Printed: 9/26/06 Page 287 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 183: Related Items Window – Prior to user selections

Date Last Printed: 9/26/06 Page 288 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

After users choose which types of AFF products they want and about what subjects, the links are
displayed below the selections. The links are grouped by AFF context, then by dataset. Only three links
at most are displayed per dataset. If more than 3 results are returned for a particular dataset, a “More…”
link is provided to display the rest of the links.

Figure 184: Related Items Window - After user selections

5.6.9.2.2. ECON Related Items
Unlike other AFF product types, Econ tables are not related to each other by subject. Therefore, the user
is not given the option of choosing which subjects they would like to search for. The related data sets are
automatically determined and returned as IBQ table result links. Thematic map links are also provided, if
they are available for the related dataset.

To determine which Economic datasets are related, the following parameters are used from the MDR:

• IBQ datasets use DATASET.ECN_SECTOR_CODE and DATASET.ECN_SERIES_CODE.

• PQR datasets use DATASET.ECN_SECTOR_CODE.

• GQR virtual tables use VIRTUAL_TABLE.VT_NAME.

User
Selections

Result Links

Date Last Printed: 9/26/06 Page 289 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• IQR datasets use IB_REF.IB_CODE, DATASET.ECN_SECTOR_CODE, and IB_TREE.IQR_IND.

See gov.census.aff.domain.relatedItems.IEconRelatedItems for actual queries used to
determine if two ECON datasets are related.

5.6.9.3. Named Servlets
All named servlets for the related items subsystem use the same controller,
gov.census.aff.controller.relatedItems.RelatedItemsServlet.

All named servlets also utilize the same JSP to render results, /jsp/relatedItems.jsp.

The context included in the named servlet definition drives the navigation and results for related items.

URI (Named Servlet) Context

QTRelatedItemsServlet qt

DTRelatedItemsServlet dt

GCTRelatedItemsServlet gct

ADPRelatedItemsServlet adp

STRelatedItemsServlet st

IPRelatedItemsServlet ip

NPRelatedItemsServlet np

MYPRelatedItemsServlet myp

GRTRelatedItemsServlet grt

TMRelatedItemsServlet tm

GQRRelatedItemsServlet gqr

IBQRelatedItemsServlet ibq

IQRRelatedItemsServlet iqr

PQRRelatedItemsServlet pqr

BFRelatedItemsServlet bf
Table 52: Named Servlets for Related Items subsystem

Date Last Printed: 9/26/06 Page 290 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.9.4. Class Diagrams
The following class diagram shows the high-level relationship amongst the classes for the related items
subsystem. The related items subsystem follows a typical architecture in American Fact Finder, utilizing
services, factories, and builders to access the necessary metadata.

RelatedItemsServlet
(from relatedItems)

RelatedItemsKey
(f rom relatedItems)

RelatedItemsPage
(f rom relatedItems)

RelatedItemsVA
(f rom relatedItems)

SubjectList
(from subject)

SubjectSearchService

+ getSubjectListRI()

(from subject)

SubjectKey
(from subject)

RelatedItemsFactory
(f rom re la ted Items)

RelatedItemsBuilder

+ buildADPRelatedItem()
+ buildDTRelatedItem()
+ buildGCTRelatedItem()
+ buildGRTRelatedItem()
+ buildIBQRelatedItem()
+ buildMYPRelatedItem()
+ buildNPRelatedItem()
+ buildPRRelatedItem()
+ buildQTRelatedItem()
+ buildTMRelatedItem()

(from relatedItems)

AFFParameters
(from common)

UserSession
(from session)

AFFServlet
(f rom co mmon)

<<Http_Servlet>>

<<instantiates>>

<<instantiates>> <<instantiates>>

<<uses>>

<<uses>>

<<uses>>

RelatedItem
(from relatedItems)

RelatedItemsGeoKey
(f rom relatedItems)

Key for ECON
Related Items

AFFKey
(from key)

<<instantiates>>

Figure 185: Class Diagram for Related Items subsystem

Date Last Printed: 9/26/06 Page 291 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.9.5. Sequence Diagrams
The following sequence diagrams highlight the main interactions among classes with the purpose of
displaying links to other AFF items, which are related to the current item being displayed by subject.

5.6.9.5.1. Sequence diagram for retrieving Related Subjects
This sequence diagram summarizes the retrieval of AFF subjects currently assigned to a table or thematic
map. In the getSubjectListRI() method, the SQL is constructed based on the context of the request. The
joins in the SQL are modified slightly if the context is for detailed tables (DT) or thematic maps (TM). This
sequence is not executed for certain Econ datasets, such as those used by the IBQ subsystem, because
these datasets are not associated with subjects. Instead, the subject list is simply set to null.

Infrastructure :
RelatedItemsServlet

 :
SubjectSearchService

 :
PersistentFactory

 :
SubjectFactory

 :
SubjectBuilder

processRequest(req, resp)

parseParameters(req)

getSubjectListRI(AFFParameters)

getPersistent(PersistentKey)

createObject(PersistentKey)

getSubjectListRI(SubjectKey)

Figure 186: Sequence diagram for retrieving related subjects for a virtual table

The following SQL returns all of the subjects for a virtual table.
select stn1.disp_label, stn1.st_id
 from subject_treenode stn1
 where stn1.treenode_id in (
 select parent_treenode_id
 from subject_treenode stn, aff_meta_central amc, subject_tree st
 where stn.amc_id = amc.amc_id
 and stn.st_id = st.st_id
 and st.st_name not like 'SHOW ME%'
 and amc.vt_name in ?
)
order by stn1.disp_label

Date Last Printed: 9/26/06 Page 292 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.9.5.2. Sequence diagram for hydrating View Adapter
The following sequence diagram shows how the related items view adapter is hydrated with the
necessary domain objects to render the related items jsp.

 :
RelatedItemsServlet

 :
RelatedItemsKey

 :
RelatedItemsPage

 :
RelatedItemsVA

processRequest(req, resp)

RelatedItemsKey()

RelatedItemsPage(RelatedItemsKey)

RelatedItemsVA()

setRelatedItemsPage(RelatedItemsPage)

setContext(context)

setTableList(tableList)

setSubjectList(SubjectList)

callPage(req, resp)

Determines which
tables user has
selected

parseWhatTable(RelatedItemsPage, tables)

Figure 187: Hydration of Related Items View Adapter

Date Last Printed: 9/26/06 Page 293 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.9.5.3. Sequence diagram for retrieving Related Item Links
For displaying result links, related product, table, and thematic map links are built and cached during the
rendering of the jsp page. They are not pre-built and stored in the view adapter.

relatedItem.jsp :
RelatedItemsPage

 :
PersistentFactory

 :
RelatedItem sFactory

 :
RelatedItem sBuilder

getProduct()

getPersistentSet(PersistentKey)

Returns null if
type not selected
by user

createObjects(PersistentKey)
buildPRRelatedItem(MetadataKey)

getQTTable()
getPersistentSet(PersistentKey)

createObjects(PersistentKey)

buildQTRelatedItem(MetadataKey)Similar calls for
ADP, MYP, NP,
ST, IP, GCT,GRT

getTMTable()
getPersistentSet(PersistentKey)

createObjects(PersistentKey)

buildTMRelatedItem(MetadataKey)

getDTTable()

getPersistentSet(PersistentKey)

createObjects(PersistentKey)
buildDTRelatedItem(MetadataKey)

Figure 188: Sequence diagram for retrieving Related Item Links

Query for retrieving ADP Related Items:

Date Last Printed: 9/26/06 Page 294 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select distinct stn4.disp_label subject, vt.disp_label, vt.vt_name, vt.ds_name,
stn4.disp_order, vt.disp_order
from subject_treenode stn3, virtual_table vt, aff_meta_control amk, aff_meta_central
amc, subject_treenode stn4, aff_meta_central amc2
where stn4.st_id = (
 select st_id
 from subject_tree
 where st_name = 'DETAILED TABLES BY DATASET'
)
and stn4.amc_id = amc2.amc_id
and amc2.ds_name = vt.ds_name
and vt.vt_name not in (VT_NAME)
and vt.vtty_code in ('ADP')
and vt.vt_name = amc.vt_name
and amk.avail_code = 'Y'
and amk.amc_id = amc.amc_id
and amc.src_table_name = 'VIRTUAL_TABLE'
and amc.amc_id = stn3.amc_id
and stn3.parent_treenode_id in (
 select stn2.treenode_id
 from subject_treenode stn2
where stn2.disp_label in (SUBJECTS)
)
order by stn4.disp_order, vt.disp_order

Query for retrieving Thematic Map Related Items:
select distinct stn4.disp_label subject, tm.disp_label, tm.tm_name,
stn4.disp_order, tm.disp_order, tm.ds_name
from subject_treenode stn3, thematic_map tm, aff_meta_control amk, aff_meta_central
amc, subject_treenode stn4, aff_meta_central amc2
where stn4.st_id = (
 select st_id
 from subject_tree
 where st_name = 'DETAILED TABLES BY DATASET'
)
and stn4.amc_id = amc2.amc_id
and amc2.ds_name = tm.ds_name
and tm.tm_name not in (TM_NAME)
and tm.tm_name = amc.tm_name
and amk.avail_code = 'Y'
and amk.amc_id = amc.amc_id
and amc.src_table_name = 'THEMATIC_MAP'
and amc.amc_id = stn3.amc_id
and stn3.parent_treenode_id in (
 select stn2.treenode_id
 from subject_treenode stn2
 where stn2.disp_label in (SUBJECTS)
)
order by stn4.disp_order, tm.disp_order

See gov.census.aff.domain.relatedItems.IRelatedItems for more queries to retrieve related
items.

Date Last Printed: 9/26/06 Page 295 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.9.6. Data Model
The following data model shows the relationship of the various tables used by the related items
subsystem. AFF_META_CENTRAL is used to determine which subject tree and subject tree nodes the
result table or thematic map belongs to.

Figure 189: Data Model for Related Items Subsystem

5.6.10. Advanced Search

5.6.10.1. Functional Description
AFF Advanced Search, called Search in the AFF GUI, provides two ways for users to search for US
Census Bureau products on the American FactFinder web site: Search by Keyword and Search by
Geography. Search by keyword allows users to search for products where search terms in the MDR
contain the user entered keyword or its synonym. Search by geography allows users to specify a
geographic location (i.e. Virginia) covered by the products they are searching for. In either case, keyword
and geographic searches are driven by data in the Oracle MDR. Advanced Search is designed to work
for English and Spanish products, but since the majority of products are in English, few queries will return
products from the Spanish language MDR. In fact, when using Advanced Search in Spanish, only the
Census 2000 survey and Puerto Rico geography are available.

The following user scenarios apply to search by keyword:

Date Last Printed: 9/26/06 Page 296 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

1. keyword - A user types in a keyword and optionally selects a survey year and program in which to
search for products. Hyperlinks to matching products are displayed.

2. keyword and synonym - A user types in a keyword, optionally selects a survey year and program
and turns synonym searching on by checking the “synonym” check box. Hyperlinks to matching
products are displayed.

3. subject - A user selects a subject and a survey year and program in which to search for products.
Hyperlinks to matching products are displayed.

The following user scenarios apply to search by geography:

1. default (geography by place name) - A user selects the geography tab on the advanced search
page. On the default page that displays under the geography tab, a user selects a survey year and
program, and a state. Hyperlinks to matching products are displayed.

2. advanced geography by place name – A user selects the geography tab on the advanced search
page. The user expands his/her geographic search options by clicking the hyperlink “Show more
selection methods and more geographic types.” Under the name search tab, the user selects a
survey year and program, and a geographic area to restrict the search (i.e. state -> Virginia). In
addition, the user types in a name (i.e. Fairfax) to narrow the selected geography. Hyperlinks to
matching products are displayed.

3. geography by drill down list - A user selects the geography tab on the advanced search page. The
user expands his/her geographic search options by clicking the hyperlink “Show more selection
methods and more geographic types.” Under the list tab that appears, the user restricts the
geography (i.e. nation, state, county) and follows prompts to narrow the selected geography down to
a specific location. For example, county would be narrowed to a specific county in a specific state.
Hyperlinks to matching products are displayed.

4. geography by address – A user selects the geography tab on the advanced search page. The user
expands his/her geographic search options by clicking the hyperlink “Show more selection methods
and more geographic types.” Under the address search tab, the user selects a survey year and
program and types in a street address to narrow the geographic search. A list of geographies (state,
counties, census tracts etc) that apply to the address are displayed for user selection to further
narrow the search results. Hyperlinks to matching products are displayed.

5. map search - A user selects the geography tab on the advanced search page. The user expands
his/her geographic search options by clicking the hyperlink “Show more selection methods and more
geographic types.” User selects the map tab and chooses a survey year and program. User either
selects a summary level to map by or types in an address to map by.

Note: Products are tables and maps built from AFF data or links to remote Census Bureau PDF and
HTML files.

5.6.10.2. Design Approach
Advanced Search is designed using the Factory – Builder design pattern, which is prevalent throughout
AFF. Advanced Search uses the AFF application’s startup routines to build reusable resources in
memory. On application startup, a search factory is instantiated for each type of search (keyword,
geography). However, the instantiation process for search factories does more than just create a new
factory, it also creates a new builder and in doing so, leads to a cascade of new objects. The constructor
for the builder creates a Hashtable of SQL statements to run once the user’s search criteria are known. It
also creates AFFResultSetParser objects to cycle through result sets and organize results into groups.
Thus, before any user ever runs a search, the following resources exist in memory:

1. Factories

2. Builders

3. SQL statements

4. ResultSet Parsers

http://factfinder.census.gov/servlet/AdvGeoSearchByListServlet?_lang=en&_command=getPlacenames
http://factfinder.census.gov/servlet/AdvGeoSearchByListServlet?_lang=en&_command=getPlacenames
http://factfinder.census.gov/servlet/AdvGeoSearchByListServlet?_lang=en&_command=getPlacenames
http://factfinder.census.gov/servlet/AdvGeoSearchByListServlet?_lang=en&_command=getPlacenames
http://factfinder.census.gov/servlet/AdvGeoSearchByListServlet?_lang=en&_command=getPlacenames
http://factfinder.census.gov/servlet/AdvGeoSearchByListServlet?_lang=en&_command=getPlacenames
http://factfinder.census.gov/servlet/AdvGeoSearchByListServlet?_lang=en&_command=getPlacenames
http://factfinder.census.gov/servlet/AdvGeoSearchByListServlet?_lang=en&_command=getPlacenames

Date Last Printed: 9/26/06 Page 297 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Example: see startup routines in AFFStartup

createAdvSearchPersistentFactory(ADV_SEARCH_BY_KEYWORD, writer);
createAdvSearchPersistentFactory(ADV_SEARCH_BY_PLACENAME, writer);
createAdvSearchPersistentFactory(ADV_SEARCH_BY_LIST, writer);
createAdvSearchPersistentFactory(ADV_SEARCH_BY_PLACENAME2, writer);

SQL statements are put into groups when the application starts up. Each group corresponds to type of
activity that will trigger their execution. For example, when a user runs a keyword search by selecting a
program year and typing in a keyword, all the SQL statements from the group
“AdvSearchByKeywordRestrictProgramYear” will be executed. It is considered a normal condition that
some of the product queries in a group may not return data for the search criteria entered. For example,
there may be no thematic maps associated with the keyword, ‘age’ but perhaps there are multi-year
profiles, data profiles and narrative profiles.

Although the keyword search and geography search design naturally diverge at certain points, their
design shares several common features. Both store search terms in the MDR and use the power of
Oracle’s thesaurus to search for products matching the keyword as well as any synonomous terms.
Second, keyword and geography search both build sets of SQL queries to run when one of the user
scenarios is run and third, both execute these queries on new threads.

• Oracle Thesaurus – Oracle’s thesaurus is used in the advanced search package to expand a user’s
search criteria, thereby increasing the chances of finding relevant results. A user who searches for
products associated with ‘White’ males is almost certainly interested in products dealing with
‘Caucasian’ males. A user who is searching for products that cover the geography ‘Fairfax’ may be
interested in ‘Fairfax city, Virginia’ or ‘Fairfax city, Iowa’ and needs to be prompted to indicate which
location is relevant before any products can be displayed. Keyword synonyms are stored in a
thesaurus called ‘AFF_SYNS’ while geographic synonyms are stored in a thesaurus called
‘GEO_SYNS.’

When a keyword search is performed, text in the aff_meta_central.search_term table column is
searched to see if it contains the user selected keyword or synonym. The text stored in search_term
column is a concatenation of a product’s name, number, description, display label, related subjects
and all words in table column headers and row headers if applicable. Depending on the type of
product being searched for relevance some of these fields may not be included in the search_term
column. For example, the row header labels in GCTs are excluded from the search_term.

When a geography search is performed, the GEO_SYNS thesaurus is used to translate the name
(i.e. Fairfax) into a series of geography names that represent geographies that are related to Fairfax.
If these names are found in the geo_search.search_term column then the geography is presented to
the user as an option for further narrowing the search by geography criteria.

Example: see SQL queries in AFFBuilderAdvSearchByKeyword and
AFFBuilderAdvGeoSearchByPlacename2 for usage of thesaurus
contains(aff_meta_central.search_term, 'SYN({?} , AFF_SYNS)', 1) > 0)
contains(geo_search.search_term, 'SYN({?} , GEO_SYNS)' , 1) > 0)

• Temporary/On-Demand Caching – Advanced Search takes advantage of the caching infrastructure
used throughout AFF in the gov.census.aff.persistence package. For keyword search, the
AFFAdvTextFuzzySearch object, used to help build a result set, is cached. For geography search,
the AFFAdvTextSearchKey object, used to help build a list of geographies, is cached and the
AFFAdvSearchGenericKey object that builds product results is cached. This saves database
resources by ensuring that users who select identical program years, keywords, or subjects or
geographies don’t force costly re-execution of all logic and alleviates the impact of the design
decision to run multiple queries to get all matching products. In the temporary cache, cached objects
compete to remain in the cache with their peers based on the frequency with which they are
requested. If an object from the cache is requested again, it is moved to the top of the cache. An
object that is not often requested will ultimately be aged out of the cache.

Date Last Printed: 9/26/06 Page 298 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Cache key – In most of AFF the Hashtable key that references a cached object is a comma delimited
String comprised of language code, dataset name and other parameters. Advanced Search key
strings are concatenations including the fully qualified class name of the cached object plus input
parameters. This divergence from the standard design was found to be necessary to create a unique
key and thought to be helpful if the designer ever wanted to instantiate the class from the key with the
proper state using reflection.

Example: A cache key string for keyword search:
gov.census.aff.domain.advancedsearch.AFFAdvTextFuzzySearchKey#lang=en_#action=AdvSe
archResultsByKeyword#_keyword=java.lang.String=age^_programYear=java.lang.String=39
^_synonyms=java.lang.String=no^_parsed_keyword=java.lang.String=?age^

Example: A cache key string for geography search (get geogpraphies):
gov.census.aff.domain.advancedsearch.AFFAdvTextSearchKey#lang=en_#action=AdvSearchP
lacenamesByPlacename#_state=java.lang.String=06^_keyword=java.lang.String=pasadena^
_programYear=java.lang.String=50^_parsed_keyword=java.lang.String=pasadena^

Example: A cache key string for geography search (get products):
gov.census.aff.domain.advancedsearch.AFFAdvSearchGenericKey#lang=en_#action=AdvSear
chResultsByPlacename#_geoBucketId=java.lang.String=39^_placename=java.lang.String=0
6000US5001124925^

• Threading – Advanced Search is designed to use a multi-threaded model to execute SQL queries
when a keyword or geographic search requires the execution of multiple SQL statements. Generally,
a separate SQL statement to find products for keywords or geographies exists for each product type
(QT, GCT, GRT, DT, TM, ADP, MYP etc). The multi-threaded design decision speeds up user
response time by allowing multiple queries to be run against the MDR simultaneously with results
added to a queue as they are returned. Had a single threaded model been used, response time may
have been delayed as each query waited for the one before it to complete. The risk of contention in
the MDR is eliminated by the fact the Oracle permits simultaneously access to the same data rows.
Also, since the MDR is “read-only” there is no risk of “dirty-reads” on different threads.

• ResultSet Parsers – On startup Advanced Query creates a custom object known as an
AFFResultSetParser. A result set parser is configured to know the column names to retrieve from the
result set and how to organize results into topical area sub-groups. The result set parser is
configured in the builder for each SQL statement; so every SQL statement can be handled uniquely,
but using the same infrastructure as the next SQL statement. The only constraint is that all column
data is always pulled out of a ResultSet as a String (i.e. getString(‘number’)) even if the data is
stored as a different datatype in the MDR. Again, this design provides a way to create a common
infrastructure for processing results. It works because the results don’t need to be processed as their
original datatype. There is no math or datatype specific logic required to display search results.

In the example below, the result set parser has been configured to retrieve the ds_name column from
the result set and break the results into groups that have the same disp_label. Note that an
advantage of the result set parser is that it doesn’t have to get all columns included in a query,
making it possible to reuse a query for different display scenarios. For example, one result parser
could get the ds_name for display and another could get the vt_name for a parser using the same
SQL statement. Of course, it’s possible to simply get both columns to accommodate every scenario,
but this approach leads to unnecessary large objects with extraneous data the uses memory.

Example: A SQL statement and a result set parser.

Select disp_label,vt_name,ds_name from virtual table order by disp_label

labels = new ArrayOfStrings(1, new String[] {"ds_name"});

new AFFGroupVectorParser("disp_label", new AFFArrayOfStringsVectorParser(labels));

• Context Parsers – A context parser is a specialized Advanced Search class used to process and
modify search terms (keywords or locations) so that special characters don’t generate SQL errors and

Date Last Printed: 9/26/06 Page 299 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

users can use terms like “OR” and “AND” to expand/narrow search criteria. The context parser
escapes reserved PL/SQL characters found in the text of a search term. Characters like ‘[‘, ‘{‘, and ‘!”
are escaped using ORACLE escape {} syntax. The context parser also replaces words like AND,
NOT and OR to the equivalent PL/SQL symbols (&,!,|) that will run inside a contains() function. For
example, the search term “poverty or race” will become ‘?poverty | ?race’ allowing the PL/SQL to
return all products containing either ‘race’ or ‘poverty’. The context parser is also designed to
interpret the character ‘*’ as a wildcard search character

Example: PL/SQL fragment showing how various search terms are interpreted:

Search term: race or salary
PL/SQL: (contains(amc.search_term, '?race | ?salary') > 0 or contains(
amc.search_term, 'SYN({race or salary}, AFF_SYNS)', 1) > 0)

Search term: race and salary
PL/SQL: (contains(amc.search_term, '?race & ?salary') > 0 or contains(
amc.search_term, 'SYN({race and salary}, AFF_SYNS)', 1) > 0)

Search term: not race
PL/SQL: (contains(amc.search_term, '?!race) > 0 or contains(amc.search_term,
'SYN({not race}, AFF_SYNS)', 1) > 0)

• ResultSet Joiners - Advanced Search spawns multiple threads upon which queries are executed
and result objects created. One of these threads is a thread that closes the common connection used
by all the threads running queries to get products. When a worker thread is finished running and has
a result, it is ready to add its result to a queue of results (a Hashtable). There is nothing to prevent
two threads from finishing at the same time; therefore, the results on each thread must be carefully
“joined” back to the main thread where the queue resides to prevent conflicts. Furthermore, we do
not want to close the connection upon which all the threads rely to be closed until all threads are
finished running. To resolve this issue, a helper class called AFFResultJoiner was created. This
helper resides on the Thread where the close connection statement is executed. It calls Thread.join()
for every query thread, forcing the current thread (close connection) to wait until all threads have run
and gotten results before closing the common database connection.

• ViewAdapter – Throughout the AFF design, ViewAdapter objects are used to store data for display
on JSP pages; thereby simplifying the design by providing a common object from which data is
extracted by the JSP page designer. In Advanced Search, the result data is nested under a series of
classes and member variables. Getting the data requires a series of calls to all of these nested
objects. In order to hide this process and simplify the JSP logic, a helper class,
gov.census.aff.viewAdapter.advancedsearch.JSPHelper was created to retrieve a data
Vector from the AFFBuildableResult object or alternatively, an AFFUserException. The ability to
retrieve either type of object, allows the JSP page designer to print an error message for the user for
every product where an error prevented retrieval of matching search results.

Example: A JSP page call to get a Vector of Detailed Tables from the search results
Object detailTables = JSPHelper.extractData(detailTablesViewAdapter);
if (detailTables instanceof AFFUserException) {
 if (e == null) {
 e = (AFFUserException) detailTables;
 }
 String message = AFFException.getDescription((AFFUserException) detailTables);
}

• Externalization – Advanced Search was designed with the capability of writing result objects to disk.
Theoretically, a cache of frequently accessed search results could be created and results returned
more quickly to users. The AFFResult object implements the Externalizable interface, which allows
developers to customize the way objects are serialized. Using Externalizable instead of Serializable
generally improves the amount of time it takes to read from and write to disk. However, at the time of

Date Last Printed: 9/26/06 Page 300 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

this writing, Advanced Search is not leveraging Externalization, partly because results are very large
and it is not clear how often identical queries are run by clients.

The GUI tabs for address search and map search were added to Advanced Search as a convenience
feature. These searches delegate control to the map package outside of Advanced Search, leveraging
the third-party mapping tools used in many areas of AFF.

• Geography by address –Please refer to section 5.6.3 Geography Selection.

• Geography by map – Please refer to section 5.6.3 Geography Selection. By design, the map
subsystem briefly transfers control to the Advanced Search component to get a list of program years
when a user first clicks the map tab.

Date Last Printed: 9/26/06 Page 301 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.10.3. Named Servlets
The following advanced search functions are available in all contexts.

Function URI (named servlet) [1] Implementation Servlet Class [2] JSP
Keyword AdvSearchByKeywordServlet advancedsearch.

AdvancedSearchByKeywordServlet
/jsp/adv_search/adv_search_keyword.jsp

Place Name
(from default
geography
tab)

AdvSearchByPlacenameServlet

advancedsearch.
AdvancedSearchByPlacenameServlet

/jsp/adv_search/adv_search_placename.jsp

Drill Down List
(from list tab)

AdvGeoSearchByListServlet

advancedsearch.
AdvancedGeoSearchByListServlet

/jsp/adv_search/adv_geo_search_list.jsp

Place Name
(from name
search tab)

AdvGeoSearchByPlacenameServlet advancedsearch.
AdvancedGeoSearchByPlacename2Servlet

/jsp/adv_search/adv_geo_search_placename.jsp

Address AGSGeoAddressServlet

map.AdvGeoAddressResultServlet /sba/adv_geo_search_by_address_mainpage.jsp

Map AdvancedGeoSearchMapFramesetServlet map.GeoSearchMapDrawServlet /sm/geosearchmap.jsp

[1] All URIs are prefix by /servlet/ unless otherwise noted.

[2] All implementation servlet classes are in the gov.census.aff.controller package.
Table 53: Advanced Search named servlets

Advanced Search heavily leverages java reflection to tie Servlets to relevant factories and builder classes. Using the SERVICE_ID name in the
init parameter of the Servlet called, the code finds a builder with the same base name. As a result, the functionality added to the application by
each new Servlet largely reflects what is different in the builder where SQL statements are stored.

Example: AFFAdvSearchPersistentFactory creates a builder based on the SERVICE_ID/action like “AdvSearchByKeyword”
AFFBuilder builder = AFFFactory.createBuilder(action);
String builderName = AFFAdvSearchBuildersInfo.BUILDERS_PACKAGE + ".AFFBuilder" + action;
Class builderClass = Class.forName(builderName);
builder = (AFFBuilder) builderClass.newInstance();

Date Last Printed: 9/26/06 Page 302 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

AdvancedSearchByKeywordServlet is the controller for keyword searches. Its SERVICE_ID is
AdvSearchByKeyword and its builder is AFFBuilderAdvSearchByKeyword. This builder is specialized to
provide options for narrowing search criteria by getting a list of keyword subjects from the MDR
subject_tree_structure table in addition to a list of program years.

AdvancedSearchByPlaceNameServlet is the controller for search by geography from the default
geography tab. Its SERVICE_ID is AdvSearchByPlacename and its builder is
AFFBuilderAdvSearchByPlacename. This builder is specialized to provide options for narrowing search
criteria by getting a list of states from the MDR geo_ref table in addition to a list of program years.

AdvancedGeoSearchByListServlet is the controller for search by geography from the List tab. Its
SERVICE_ID is AdvGeoSearchByList and its builder is AFFBuilderAdvGeoSearchByList. This builder is
specialized to provide options for narrowing search criteria by getting a hierarchical list of summary levels
in addition to a list of program years.

AdvancedGeoSearchByPlacename2Servlet is the controller for search by geography from the Name
tab. Its SERVICE_ID is AdvGeoSearchByPlacename2 and its builder is
AFFBuilderAdvGeoSearchByPlacename2. This builder is specialized to provide options for narrowing
search criteria by getting a hierarchical list of summary levels and allowing users to enter a geographic
name to find within a geography in addition to a list of program years.

Based on the increasing specialization of behavior in these servlets, as you might expect,
AdvancedGeoSearchByListServlet inherits from AdvancedSearchByPlaceNameServlet, etc.
The class diagrams in the next section detail these relationships.

5.6.10.4. Class Diagrams
Due to the complexity of the Advanced Search subsystem in AFF, not all Advanced Search classes are
depicted in the class diagrams that follow. However, all classes depicted on sequence diagrams are also
included in class diagrams to show the inheritance of behavior. These are the main classes required to
understand how Advanced Search works.

5.6.10.4.1. Relationships between servlets, services, factories and builders
The class diagram below depicts some of the classes involved in responding to Advanced Search
requests. All Advanced Search Servlets (excluding address and map search) ultimately inherit from
AdvancedSearchServlet. By doing so, each of the Servlets inherits a service class, which is instantiated
in the initialization of AdvancedSearchServlet and maintained as a member variable of
AdvancedSearchServlet. The service is designed to instantiate a factory with a builder object specific to
the type of search being performed. The service is able to determine which builder to signal the factory to
use because the builder references the SERVICE_ID init parameter. Please refer to the sequence
diagrams in section 5.6.10.5 for detailed interactions.

Date Last Printed: 9/26/06 Page 303 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

AdvancedSearchByKeywordServlet
(f ro m ad van cedsearch)

AdvancedGeoSearchByListServlet
(from advancedsearch)

AdvancedGeoSearchByPlacena
me2Servlet

(from advancedsearch)

AdvancedSearchByPlacenameServlet
(from advancedsearch)

AFFServlet
(from common)

<<Http_Servlet>>

AdvancedSearchServlet
(from advancedsearch)

AFFMultiplexService
(from advancedsearch)

AFFService
(from advancedsearch)11

AFFAdvSearchPersistentFactory
(f rom advancedsearch)

Inner Class

AdvSearchPersistentFactory
(from AFFAdvSearchPersistentFactory)

AFFBuilder
(from advancedsearch)

AFFFactory
(from advancedsearch)

11

1

AFFBuilderAdvSearchByKeyword
(from advancedsearch)

AFFBuilderAdvGeoSearchByPlacename2
(from advancedsearch)

AFFBuilderAdvGeoSearchByList
(from advancedsearch)

1

AFFMultiplexBuilder
(from advancedsearch)

AFFAdvSearchBuilder
(from advancedsearch)

AFFBuilderAdvGeoSearchByPlacename
(from advancedsearch)

AFFBuilderAdvSearchByPlacename
(from advancedsearch)

Figure 190: Class Diagram – Controller and Service-Factory-Builder Relationships

5.6.10.4.2. Relationship between Builders, Streamable Statements and String Statements
The class diagram below is a continuation of class diagram in Figure 190 starting from
AFFMultiplexBuilder. All builders are subclasses of AFFMultiplexBuilder and maintain
AFFStreamableMultipleSqlStatement objects as member variables. See the diagram below for the
complex inheritance leading from AffSqlStatement to AFFStreamableMultipleSqlStatement.

As shown in the sequence diagrams, the builders call the execute method in
AFFStreamableMultipleSqlStatement object type to begin running each SQL statement on a new thread.
However, the AFFStreamableMultipleSqlStatement actually transfers execution and threading
responsibility to the AFFStreamableRunner member class.

All of a builder’s SQL statements are stored in subclasses of AFFStringSQLStatement. The chosen
subclass depends on whether the SQL to be executed is a statement, prepared statement or procedure

Date Last Printed: 9/26/06 Page 304 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

call. Subclasses that use the “Enhanced” naming convention are used to for queries that will return
search results. The enhanced name indicates their constructor accepts an additional parameter, called
an Accessor that stores the variable name upon which search terms that have gone through the context
lexer will be stored. This is not necessary for queries that simply provide a list of search options like
program years because there is no search term to modify and make safe.

AFFMultiplexBuilder
(from advancedsearch)

AFFSqlStatement
(from advancedsearch)

builders invoke
AFFMultipleSqlStatement
from super class

AFFVersatileMultipleSqlStatement
(f ro m ad van cedsearch)

AFFSqlStatementParallelRunner
(from advancedsearch)

AFFSqlStatementRunner
(from advancedsearch)

AFFMultipleSqlStatement
(from advancedsearch)

#stmtRunner

AFFSqlStatementStreamableRunner
(from advancedsearch)

AFFSelectiveMultipleSqlStatement
(f rom advancedsearch)

AFFParallelMultipleSqlStatement
(from advancedsearch)

AFFStringSqlStatement
(from advancedsearch)

AFFStreamableMultipleSqlStatement
(from advancedsearch)

AFFEnhancedStringSqlStatement
(f ro m ad vancedsearch)

AFFEnhancedPreparedSqlStatement
(from advancedsearch)

DynamicSqlInstant iator
(from advancedsearch)

AFFDynamicStringSqlStatement
(from advancedsearch)

#instantiator

AFFCloseConnStatement
(from advancedsearch)

AFFCloseConnSmartStatement
(f rom a dvanced sea rch)

AFFFuncCallableStatement
(from advancedsearch)

AFFPreparedSqlStatement
(from advancedsearch)

AFFProcCallableStatement
(from advancedsearch)

Figure 191: Class Diagram - Builder, SQL Statement Relationships – Class diagram

5.6.10.5. Sequence Diagrams

5.6.10.5.1. Keyword Search - Overview
The sequence diagram below provides a high-level overview of the sequence of method calls that
generate keyword search results. A keyword search leads to the execution of multiple SQL queries to
find matching products. Each SQL query represents a product type (i.e. DT, QT, ADP, MYP, NP, GCT,
GRT, remote html and PDF files) and is executed on it’s own thread to allow concurrent creation of results
and therefore speed up the creation process. The sequence of events begins at the processRequest
method in the super class, AdvancedSearchServlet. The processRequest method of the super class
uses Java reflection to discover what subclass and subclass method to invoke next (i.e getResults).

 As shown in the diagram below, when a user submits a keyword search, the getResults() method is
invoked in AdvancedSearchByKeywordServlet. The AFFMultiplexService is responsible for creating
an object, known in AFF as a ‘key’, from input parameters. This key contains the information needed to
seed input parameters to SQL queries. The AdvSearchPersisentFactory class then uses this key
and passes it to a builder that creates PreparedStatements and then executes each on a thread. Note
that instead of a Java.Sql.PreparedStatement, Advanced Search by keyword uses a custom object,
AFFMultipleSqlStatement. This object is customized to store Java.Sql.PrepardStatement objects and
provide the threading infrastructure to execute them.

Date Last Printed: 9/26/06 Page 305 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 :
AFFBuilderAdvSearchByKeyword

 : AFFServlet :
AdvancedSearchServlet

 :
AdvancedSearchByKeywordServlet

 :
AFFMultiplexService

 : AFFAdvSearchPersistentFactory :
AFFStreamableMultipleSqlStatement

Async call: Spawns
new thread for each
SQL statement. See
Threading diagram
for detail

Returns query results
for all SQL statements

processRequest() getResults()

getMultipleResults()

getResult(AFFAdvSearchKey)

builder.getResult(AFFAdvSearchKey)
execute(Object)

createObject(PersistentKey)

getResult(AFFParameters)

createKey(AFFParameters)

Figure 192: Sequence diagram for building keyword search results

5.6.10.5.2. Geography Search – Overview
The sequence diagram below provides a generalized overview of the method calls that generate search by geography results when using the
default geography tab, list tab or name tab. Unlike keyword search, which is completed in the context of a single user request, Advanced Search
by geography is a two-step process, requiring a user to first search for geographies that are relevant to a year and program; and then choose a
geographic location in which to find products. Only after selecting a geography does the application check products for relevance to the
geography. Thus, the two sequence diagrams below illustrate 1.) finding a geography and 2.) searching for relevant products within the
geogrpahy.

Step 1, finding a geographic location, involves storing the SQL statement that finds geographies in the AFFDynamicStringSQLStatement, a
class customized to use a single threaded execution model in advanced search.

The sequence of method calls for step 2 is very similar to keyword search. However, the Servlet and builder classes are different and some of the
underlying processing logic differs. Also, the geoID for the selected geography, as well as year and program selections are input parameters for
multiple SQL statements.

Date Last Printed: 9/26/06 Page 306 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 :
AdvancedSearchByPlacenameServlet

 : AFFServlet :
AdvancedSearchServlet

 :
AFFMultiplexService

 : AdvSearchPersis tentFactory :
AFFBuilderAdvGeoSearchByPlacename2

 : AFFPreparedSqlStatement

Method doesn't spawn
a new thread because
there's only one SQL
statement to execute
to get geographies

processRequest() getOneResult()

getOneResult()

getResult(AFFParameters)

createKey(AFFParameters)

getResult(AFFAdvSearchKey)

createObject(Pers istentKey)

builder.getResult(PersistentKey)
execute(Connection, AFFAdvSearchKey)

Figure 193: step one: finding a list of states and program years

 :
AFFStreamableMultipleSqlStatement

 : AFFServlet :
AdvancedSearchServlet

 :
AdvancedSearchByPlacenameServlet

 : AFFMultiplexService :
AFFAdvSearchPersistentFactory

 :
AFFBuilderAdvGeoSearchByPlacename2

processRequest()
getResults(AFFParameters)

getMultipleResults(AFFParameters, String)

getResult(AFFParameters)
createKey(AFFParameters)

getResult(AFFAdvSearchKey)
createObject(PersistentKey)

getResult(AFFAdvSearchKey)
execute(Object)

Async call: Spawns
new thread for each
SQL statement. See
Threading diagram for
detail

Returns query results
for all SQL statements

Figure 194: step two: finding products that match selected geography

Date Last Printed: 9/26/06 Page 307 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 :
A FFS tream ableRes ult

 :
AFFM ul ti plex B uilder

 :
A FFS tream ableM ult ipleS qlS tatem ent

 :
A FFS qlS tatem entS tream ableRunner

 :
A FFB uildableRes ult

 : Thread :
RunnableG eneric B uilder

ex ec ut e(Con nec ti on,
A FFA dvS earc hK ey)

m eth od loops th rough eac h S Q L s tate ment (i .e.
S Q LE nhanc e dS QLS tate ment) a nd pas ses a n
indi vi dual s tate ment a s an argum en t to the
ex e c ute m ethod i n the s tatem ent runn er.
The refore i f the re are 10 statm ents , ex ec ute is
c all ed 1 0 t im es and 10 Th reads are gen erated.

ex ecute(O bjec t)

A FFS tream ableRes ult(Ge
neric B uilder, O bjec t)

A FFB uildableRes ult(G enericB uilder, O bjec t)

bu il d(G ene ri c B uilder ,
O bjec t) Ru nnableG eneri cB ui l

der(G eneric B uilder,
O bjec t)

run()

buil d(Ge neri cB uilde r, O bjec t)ex ec ute(O bjec t)

us es m ethods in m em ber
A FFS tringS qlS tatem ent objec ts to
ex ec ute a s tatem ent, prepared
s tatem ent or proc edure c all

Figure 195: Threading Sequence Diagram

Date Last Printed: 9/26/06 Page 308 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.10.6. Data Model

5.6.10.6.1. Keyword Search
The data model in Figure 196 depicts the major MDR tables involved in finding products whose search
terms match a keyword. The central table guiding keyword search is AFF_META_CENTRAL (see Figure
196 below). All products store their related keyword search terms in AFF_META_CENTRAL. They
navigate to these search terms using relationship between the product table (i.e. matrix_table, product,
etc) and AFF_META_CENTRAL. Some tables, like AFF_META_CONTORL and SUBJECT_TREE, are
auxiliary tables and are not used to find search results. Instead they are used to exclude products
marked unavailable and to organize products into subcategories. For example, if eight ADP tables
contain the keyword “age” in AFF_META_CENTRAL, then 4 of those results could belong to the
subject_tree_node “2003 ACS tables” while the other 4 belong to “2002 ACS tables.” Each of the 4 would
be organized into groups by subject_tree_node.

Thematic maps, matrix tables and virtual tables use a common set of auxiliary tables. Products in the
product table are a notable exception. These products are remote links to US Census html and PDF files.
Due to the way the Census Bureau historically maintained these products, there is no relationship
between them and the subject trees. Instead they use the GEO_BUCKET display_label,
survey_instance_product/dataset and search_keywd_year_program tables to organize search results into
sub groups.

Figure 196: Data Model for Keyword Search

5.6.10.6.2. Search by Geography Data Model

5.6.10.6.2.1. Get geographies by name (Default Geography tab, Name tab)
The data model in Figure 197 depicts the key MDR tables involved in finding all geographic locations that
match a location name typed in by a user (i.e. “Fairfax”). The process of retrieving geographies that
match user criteria is only the first step towards getting products that cover a user selected geography like

Date Last Printed: 9/26/06 Page 309 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

“Fairfax County, Virginia.” The location name (i.e. “Fairfax”) is translated into a series of GEO IDs that
reference “Fairfax” in their names.

The central tables guiding translation into geoIDs are the GEO_SYNS thesaurus table and
GEO_SEARCH table. The Oracle Thesaurus table GEO_SYNS was set up to translate a pre-defined list
of geographic names like “Fairfax” into numeric IDs like 77045. These numeric IDs are the search terms
found in GEO_SEARCH. If a search term contains one of the IDs found in GEO_SYNS, the GEO_ID
from the same record is used to list matching geographies. Many Auxiliary tables are utilized to translate
the geoID into a logical name like “Fairfax County, Virginia” and to organize results by program year.

Only a few auxiliary tables are shown in the data model below. Since it’s possible to turn a geographic
location “off” in the MDR for the purposes of display, the GEO_REF and
SEARCH_GEO_YEAR_PROGRAM are used to join GEO_TREE_GSL with the search results to make
sure SEARCH_IND is set to “Y.”

Figure 197: Data model - Get a list of geographies that match a location name

5.6.10.6.2.2. Data Model – Get products that cover a specific geography (Default Geography
Tab, List Tab, Name Tab)

The preceding data model depicted how a list of locations is generated when a user types in a geographic
name. Once the user selects from this list, the application code is passed the specific geoID that
represents that geography (i.e. Virginia = 04000US51) and the bucket id representing a program year (i.e.
Census 2000 = 50). These two variables are used to find products that apply to the geography and
program year selection. Due to the fact that different product types use different MDR tables in the
geography search process, several data models are presented below to reflect the 3 different ways that
products are found.

The data model in Figure 198 depicts the major MDR tables involved in finding virtual table, matrix table
and thematic map products by geography and program year. In Figure 198, auxiliary tables such as,
AFF_META_CONTROL and AFF_META_CENTRAL are only used to limit results to products that are
marked available in the MDR. Note, that although AFF_META_CENTRAL is a key table in keyword
search, it’s not a primary driver in search by geography. Additional tables like SUBJECT_TREE and
SUBJECT_TREENODE are used to organize results into sub-groups and for purposes of simplification
are not shown on this data model.

Figure 199 and Figure 200 depict the major MDR tables involved in finding products that cover a user-
selected geography and program year. Three data models are presented in order to capture the way
different types of products are located.

When searching for matrix tables, virtual tables and thematic maps, the central tables are
GEO_TREE_CONTENT and GEO_TREENODE as shown in Figure 198. The data model in Figure 200
depicts the major MDR tables involved in finding reference map products by geography and program

Date Last Printed: 9/26/06 Page 310 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

year. The data model in Figure 200 depicts the major MDR tables involved in finding HTML/PDF
products by geography and program year.

In Figure 199, the central tables driving discovery of Reference Maps is GEO_TREENODE,
GEO_TREE_GSL and SEARCH_GEO_YEAR_PROGRAM_SGYP. The join between these tables
produces a geoID, treeID and map name to pass to the Mapping Subsystem in order to display a map.
Advanced Search merely displays the hyperlink with input fields required to seed the Mapping Subsystem
when a user clicks the search result. Please refer to section 5.6.12 Create a Reference Map.

In Figure 200, the central tables driving discovery of HTML and PDF products are the PRODUCT and
PRODUCT_GEO_REF tables. The GEO_BUCKET table is merely used to organize link results into
groups by program year. The join between these tables produces a hyperlink to a product which may be
stored on AFF or on a remote US Census Bureau site. Regardless the link uses the URL path in the
PRODUCT table.

Figure 198: Data Model - Search for products by geography (Thematic Maps, Matrix Tables, Virtual Tables)

Figure 199: Data Model - Search for products by geography (Reference Maps)

Date Last Printed: 9/26/06 Page 311 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 200: Data Model - Search for products by geography (html, PDF files)

5.6.10.6.2.3. Data Model – Get products by Address (Address Tab)
The search by address tab in Advanced Search uses the map subsystem to retrieve a list of geographic
locations that are covered by and address. Please see section 5.6.12 Create a Reference Map for
details. After a user selects a location from the list of geographic locations returned by address search,
the map subsystem temporarily shifts control back to Advanced Search, by using the SQL statements in
Advanced Search AFFBuilderAdvGeoSearchByList builder to generate results. When generating a list of
search results for a selected geography under the address tab, the application uses the same tables
depicted in section 5.6.10.6.2.2 above.

5.6.10.6.2.4. Data Model – Get map products by Geography (Map Tab)
The map tab in Advanced Search uses the map subsystem to provide an interface allowing selection of
maps by geography and program year. However, when a user clicks the map tab, the Mapping
subsystem immediately transfers control temporarily to Advanced Search in order to retrieve a list of
program years displayed on the map page. This uses SQL statement in the Advanced Search
AFFBuilderAdvGeoSearchByList builder, which inherits from AFFBuilderAdvGeoSearchByPlacename.
Control then transferred back to the mapping subsystem, which creates a hierarchical list of geographic
locations using a default program year (Census 2000). The tables used to get a list of program years are
depicted below in Figure 201.

Figure 201: Data Model - Get Program Years

5.6.11. Access Metadata Browser

5.6.11.1. Functional Description
The metadata browser subsystem provides access to a variety of information (metadata) for various data
elements displayed throughout the application. The metadata browser subsystem is integrated with the
application help system so users can navigate between information specific to the data item being
displayed and more general information about the application. End users access the metadata
subsystem a number of ways throughout the application including links from result pages as well as the
‘HELP’ button from the main navigation bar.

The detailed information displayed in the metadata browser is independent of the geography selected by
the user. In the case of viewing metadata for a table, a table “preview” is generated which contains
column headings and row stubs, but does not contain any data numbers.

Date Last Printed: 9/26/06 Page 312 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

There are various elements of information that can be displayed, including detailed information about
programs, surveys, survey instances, datasets, tables, and thematic maps.

The following is a brief description of the various data items available in the metadata browser
subsystem:

• Program - Represents the concept of a Census Bureau program, which is a group of surveys and
censuses related by a common theme.

• Survey - An investigation about the characteristics of a given population (survey universe). For
example: 2000 Decennial Census, 2002 Economic Census, and American Community Survey.

• Survey Instance - A survey instance is the instantiation of a survey or census for defined period of
time. For example, the Decennial Census survey would have survey instance in 1990, 2000, 2010,
etc.

• Series (For Economic Census) – For example: Geographic Series, Industry Series, etc.

• Dataset – Grouping of tables, maps, etc. related to a particular survey instance

• Matrix Tables – Tables used to display AFF data in a tabular format

• Thematic Map – A graphic used to view geographic patterns in data

• Subject Characteristic - Subject associated with a particular table or map. For example: Age, Sex,
Income, etc.

• Data Item (For Economic Census) - Column headings in Economic Census tables

• Code Reference (For Economic Census) - Definition of NAICS code

• Domain Value (For Economic Census) - Definition of special characters in Economic Census data

• Geography Reference - Reference information for a geography

5.6.11.2. Design Approach
The primary design consideration was a tight integration of the metadata subsystem with the existing
application “HELP” system so that users can navigate between the browser and “HELP” with the same
look and feel. Users can also access the glossary as well as tutorials on how to use AFF.

At any point during use of the metadata browser subsystem, a user can return to the top of the metadata
hierarchy (see Figure 202) by clicking on “Census Data Information” in the navigation bar.

Date Last Printed: 9/26/06 Page 313 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure - Metadata Element Hierarchy
Version - 1.1 Date - 2005-06-01

Program

Survey

Survey
Instance Sector

Dataset Product

Series

Dataset

Data ItemDocumentation
(PDF file) Matrix Table Virtual Table Thematic Map

Table Preview Subject
Characteristic

Subject
CharacteristicSource Table

Figure 202: Metadata Element Hierarchy

The metadata browser subsystem utilizes existing factories and builders to retrieve the necessary
information from the metadata repository and hydrate the view adapter. A common service,
MetadataBrowserService, is used to access the different factories and builders.

Given the hierarchical structure of the metadata information (See Figure 202), each element (i.e. table,
survey, etc.) has a known relationship to another element that can also be displayed. For example, when
information about a particular table is displayed, known elements that are also displayed include program,
survey, survey instance, dataset, etc.

The hierarchical structure of the metadata allows the code to reuse existing methods to display the
metadata information. Given an entry point into the metadata tree, each element’s parent and children
type are known. Therefore, after an element is built, those elements with a relationship to the chosen
element are also built and displayed. For example, if a user clicks on a dataset, the survey instance is
also fetched and displayed as a hyperlink. In turn, the survey instance element knows to create a survey
element for display. The code traverses the hierarchy until it reaches program, the top of the hierarchy.

The first URL parameter passed to MetadataBrowserServlet indicates the “type” of information to be
displayed in the browser window. This parameter drives the hydration of the view adapter with the
necessary information, making various method calls to retrieve information from the metadata repository.

When a user reaches a leaf element, such as Subject Characteristic, Data Item, etc., a dynamic back
button is provided to the user to return to the previous page. The link utilizes a JavaScript function to
navigate back through the user’s history to the previous page.

Date Last Printed: 9/26/06 Page 314 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.11.3. Named Servlets
There are two named servlets in web.xml for the metadata browser subsystem. Each named servlet uses
a common service, gov.census.aff.service.metadataBrowser.MetadataBrowserService.

URI (Named Servlet)
Implementation Servlet

Class [1] JSP

MetadataBrowserServlet MetadataBrowserServlet /jsp/MetadataBrowser/MetadataBrowser.jsp

ProductBrowserServlet ProductBrowserServlet /jsp/MetadataBrowser/ProductResult.jsp

[1] All implementation servlet classes are in the gov.census.aff.controller.metadatabrowser package.
Table 54 Named Servlets for Metadata Browser subsystem

5.6.11.4. Class Diagrams
The following class diagram shows the high-level relationship amongst the classes for the metadata
browser subsystem. The metadata browser subsystem follows a typical architecture in American Fact
Finder. It reuses a lot of existing factory/builder combinations to retrieve information from the metadata
repository.

MetadataBrowserServlet
(from metadataBrowser)

ProductBrowserServlet
(from metadataBrowser)

AFFServlet
(from common)

<<Http_Servlet>>

MetadataKey
(from metadata2)

QTTableService
(from tabl e)

BrowserServlet
(from metadataBrowser)

MetadataBrowserService
(f rom m etadataBrowser)

<<instantiates>>

TableEntity
(f rom m etadata2)

Other services
included for various
table contexts

Shell
(from metadata2)

ShellTable
(from shellTable) AFFKey

(f rom key)

<<instantiates>>

<<instantiates>>

ShellTableFactory
(from shellTable)

QTShellTableBuilder
(f rom sh ellTab le)

<<instantiates>>

<<uses>>

Survey
(from metadataBro...)

Program
(from metadataBrowser)

Series
(from metadataBrowser)

Product
(from m etadataBro wser)

DataElement
(f rom m etadata2)

<<instant iates>> <<instantiates>>

TableEntityBuilder
(from metadata2)

Other 'shells'
included

SurveyFactory
(from metadataBrowser)

SurveyBuilder
(from metadataBrowser)

TableEntityFactory
(f rom m etadata2)

<<uses>><<uses>>

<<uses>>

<<uses>>

Figure 203: Class Diagram for Metadata Browser subsystem

Date Last Printed: 9/26/06 Page 315 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

A request for metadata for a table will result in the particular table’s service to be used to build the table
preview. The service will build a ShellTable object that has the column and row headings for the table
with no numbers included.

Common to all requests for metadata is the construction of the domain objects, which get stored in the
view adapter. These domain objects hold all the necessary information to be displayed in the browser
jsp. Each domain object is added to the view adapter if it has a relationship (See Figure 202) to the
element being requested. To construct the domain objects, the metadata subsystem reuses existing
factories and builders to recreate the metadata necessary. A separate service, MetadataBrowserService,
is used to access all the different factory/builder combinations.

5.6.11.5. Sequence Diagrams
The following sequence diagrams highlight the main interactions among classes with the purpose of
displaying the metadata information a user has requested.

5.6.11.5.1. Sequence diagram for a Quick Table (QT)
The first sequence diagram summarizes displaying information for a quick table (QT). For other table
types, such as DT, ADP, GCT, etc., the sequence is very similar with a different factory/builder
combination in order to build the table preview and retrieve information about the table and its related
subject characteristics.

Date Last Printed: 9/26/06 Page 316 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Infrastructure : QTTableService : MetadataBrowserService : MetadataBrowserServlet

processRequest(req,resp)

createTablePreview(datasetId, tableId, Locale)

setQuickTable(viewAdapter)

getQuickTable(datasetId, tableId)

setDataset(viewAdapter)

getDataset(dataset Id)

setSurveyInstanceLis tFromDataset(viewAdapter)

getSurveyInstancesFromDataset(datasetId)

setSurvey(viewAdapter)

getSurvey(surveyId)

setProgram(viewAdapter)

getProgram(programId)

getViewAdapter()

callPage(req, resp)

See section ???
for further details

See diagram
getQuickTable(..) for
further details

Similar to getSurvey(..) with
different factory/builder
combination

See diagram getSurvey(. .)
for further detai ls

Method called
depends on context

Service called depends
on table context

Similar to getSurvey(..) with
different factory/builder
combination

Similar to getSurvey(..) with
different factory/builder
combination

Figure 204: Sequence diagram for displaying metadata information for a quick table (QT)

5.6.11.5.1.1. Sequence diagram – getQuickTable(..)
Builds a TableEntity domain object that contains the base tables and subject characteristics associated
with the table.

Date Last Printed: 9/26/06 Page 317 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 :
MetadataBrowserService

 :
PersistentFactory

 :
TableEntityFactory

 :
TableEntityBuilder

getPersistent(PersistentKey)

createObject(PersistentKey)

getQuickTable2(datasetId, tableEntityId)

Figure 205: Sequence diagram for retrieving detailed information for a quick table (QT), given a dataset ID

Query used to retrieve detailed information for a quick table (QT):
select vt.vt_name, vt.vtbh_nbr, vtbh.disp_label, vt.disp_label, vt.disp_order
from virtual_table vt, virtual_table_box_head vtbh
where vt.vtty_code in ('DP','QT','VAR')
and vt.ds_name = ? and vt.vt_name = ? and vt.vtbh_nbr = vtbh.vtbh_nbr
and vt.vtbh_svy_abbr = vtbh.vtbh_svy_abbr
and vt.vtbh_svy_year = vtbh.vtbh_svy_year
order by 5, 1

5.6.11.5.1.2. Sequence diagram – getSurvey(..)

 :
MetadataBrowserService

 :
PersistentFactory

 :
SurveyFactory

 : SurveyBuilder

getPersistent(PersistentKey)

createObject(PersistentKey)

getSurvey(surveyId)

Figure 206: Sequence diagram for retrieving detailed information for a survey, given a survey Id

Query used to retrieve survey information for a given survey name:
select sv.sv_name, sv.prg_name, pr.prg_abbr, sv.descr, sv.dtl_descr, sv.fs_name
from survey sv, program pr
where sv.sv_name = ? and sv.prg_name = pr.prg_name

5.6.11.5.2. Sequence diagram for a Thematic Map (TM)
The following sequence diagram summarizes displaying metadata information for a thematic map. The
sequence is very similar to displaying metadata information for a table, however no table preview is
necessary for a thematic map. Similar to a table, each domain object is created based on the previous
domain object created.

Date Last Printed: 9/26/06 Page 318 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Infrastructure :
MetadataBrowserService

 :
MetadataBrowserServlet

See diagram
getTheMap(..) for
further detai ls

processRequest(req,resp)

setTheMap(viewAdapter)

getTheMap(datasetId, mapId)

setDataset(viewAdapter)

getDataset(datasetId)

setSurveyInstanceListFromDataset(viewAdapter)

getSurveyInstancesFromDataset(dataset Id)

setSurvey(viewAdapter)
getSurvey(surveyId)

setProgram(viewAdapter)

getProgram(programId)

getViewAdapter()

callPage(req,resp)

Similar to getSurvey(..) with
different factory/builder
combination

Similar to getSurvey(..) with
different factory/builder
combination

Similar to getSurvey(..) with
different factory/builder
combination

See diagram getSurvey(..)
for further details

Figure 207: Sequence diagram for displaying metadata information for a thematic map (TM)

Date Last Printed: 9/26/06 Page 319 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.11.5.2.1. getTheMap() – Sequence diagram detailing process of retrieving metadata for a
thematic map

Builds a TableEntity domain object that contains the base tables and subject characteristics associated
with the thematic map.

 :
MetadataBrowserService

 :
PersistentFactory

 :
TableEntityFactory

 :
TableEntityBuilder

getPersistent(PersistentKey)

createObject(PersistentKey)

getThematicMap2(datasetId, tableEntityId)

Figure 208: Sequence diagram for retrieving detailed information for a thematic map, given a dataset ID

Query used to retrieve detailed information for a thematic map:
select tm.tm_name, tm.disp_label, tm.descr, tm.disp_order
from thematic_map tm
where tm.ds_name = ? and tm.tm_name = ?
order by 4, 1

5.6.11.6. Data Model
The following data model shows the relationship of the various tables used by the metadata browser
subsystem from the metadata repository (MDR). The table relationships are laid out in a similar format as
the metadata element hierarchy (Figure 202). The attributes listed under each table are the key
attributes displayed by subsystem to the user, including a textual description of the metadata element.

Date Last Printed: 9/26/06 Page 320 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 209: Data Model for Metadata Browser Subsystem

Date Last Printed: 9/26/06 Page 321 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12. Create a Reference Map

5.6.12.1. Functional Description
This document addresses the creation of Reference maps in the American FactFinder application.
Reference Maps let the users view census boundaries such as states, counties and features such as
roads, streams, etc. Users can customize maps by turning various boundaries, features and
corresponding labels on or off or by specifying a title. The area of interest for displaying maps
(geography) can be selected by using one of several ways such a browsing through a list of geographies,
performing a name or an address search.

Users have the ability to view maps at various scales, starting from zoom 10 at which entire US is shown
to a street level map at zoom 1 which spans approximately .4 miles. Users are provided mechanisms to
pan the map, zoom in and zoom out by either clicking on a map, or using specialized controls on the user
interface or to relocate the map at a given address or a latitude and longitude pair. Users also have the
ability to download a resulting map and legend combination as a PDF document.

For a brief description of terms frequently used in this section, see Table 55:

5.6.12.1.1. Glossary of Terms
Term Description

SDE Spatial Database Engine product from ESRI.
SDE Layers In AFF, the geographic data associated with maps is stored in SDE as layers. Data

associated with SDE resides in an underlying database such as Oracle. Layers can
be of different types such as line, polygon or point and can by at different degrees of
detail. The exact layer to be used in rendering a map depends on the scale of the
map. For example, a projected layer may be used to display a map at zoom 10.

ArcIMS Internet Mapping Server product from ESRI.
ArcIMS consists of a TP monitor (doing load balancing) and various servers (agents)
doing discrete tasks such as creating a map by retrieving data from SDE and
rendering an image (e.g. in GIF format), querying SDE layers for column values
associated with spatial data etc. Requests for maps to IMS are encoded in a
specialized XML (Extensible Markup Language) format. These requests can either
include a complete description of drawing specification of layers each time or a
reference to specified in one or more "Service Files" or a combination of the two.

Service Files
(AXLs)

A Service File (encoded in XML) is a text file on the Server that lists all the layers,
symbology to be displayed on a map at each Scale (Zoom Level). The Service files
are read by ArcIMS at start up and are stored in memory. Dynamic requests than
specify the name of the Map Service to be used for that request.

Reference Map A Reference Map is a simple map that may have boundaries such as states, counties
and features such as roads, streams etc.

Table 55: Glossary of Terms

5.6.12.2. Design Approach
Following apply to generally all types of maps, except where noted:

5.6.12.2.1. Design/Architectural decisions on session/state management
In simple terms a map is fully described by the extent of the map, the boundaries and features which are
turned on or being displayed on the map and the map service being used to create the map. Once all
these items are fully determined a map is ready to be rendered. If all these state parameters are stored
this map can be easily identified and recreated. Mapping subsystem uses the term “map signature” to
name these parameters collectively and uses it extensively to cache the maps, save them as XML files,
which can later be used to recreate the map and to provide bookmarkable URLs to maps. When the user

Date Last Printed: 9/26/06 Page 322 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

creates a reference map for the first time, a default service and a default collection of boundaries and
features are used to create a map for the extent of the selected geography (United States, if not selected
explicitly). After a user has “bootstrapped” all subsequent user actions are determined with reference to
this map. For example, when a user pans, the previous center of the map is restored and a new center is
determined based on the direction of pan. This then becomes the new center of the map and is used to
create the new map. The new map then becomes the reference for any subsequent requests by the user.
In abstract terms, any map state is figured out as follows:

 old map state + change in map state due to user action = new map state

Also, new state of map is independent of the path taken to create that map. For example, final state
parameters associated with a map would be same, no matter if a user explicitly selected state of
Maryland or created a US map first and then zoomed onto state of Maryland. These state parameters
describe the current map fully and deterministically.

MapConfiguration object, which encapsulates the current map state of a user is stored in the
HTTPSesssion. Also once a map is created it is persisted in a database cache. The following section on
Caching describes this process more fully.

5.6.12.2.2. Map Class Diagrams

5.6.12.2.2.1. Hierarchy of Controller Classes Used for Drawing Maps
Figure 210 depicts the controller hierarchy of classes used for drawing maps. MapDrawServlet class
forms the root of this hierarchy and provides base functionality for drawing maps including handling user
actions, storing and retrieving state information, communicating with service layer, preparing the view
adapter bean and finally invoking JSP. This class is an abstract class, with classes like
ReferenceMapDrawServlet, ThematicMapDrawServlet etc. providing the concrete implementations.
These classes handle functions specific to the kind of map they generate. For example,
ThematicMapDrawServlet class, besides just drawing the map, also handles the user action where he
changes the shade by geography.

Date Last Printed: 9/26/06 Page 323 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

G S

HttpServlet

(from http)

H S

AFFServlet

(from common)

MapServlet
(from map)

MapDrawServlet
(from map)

ReferenceMapDrawServlet
(from map)

ReferenceMapConfigurat ion
(from map)

MapConfiguration
(from map)

<<instant iates>>

ThematicMapDrawServlet
(f ro m m ap)

SearchMapDrawServlet
(from map)

ThematicMapConfiguration
(f ro m m ap)

SearchMapConfiguration
(from map)

<<instantiates>>

IMapParameters
(from map)

<<Interface>>

<<instantiates>>

These Conf ig o bje cts
form the i npu t to the
servi ce l aye r and i s al so
use d i n maintain i. ..

Figure 210: Hierarchy of Controller Classes Used for Drawing Maps

Date Last Printed: 9/26/06 Page 324 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.2.2.2. Hierarchy of Controller Classes Used for Boundaries Page
Figure 211 represents the hierarchy of classes used for displaying boundaries page.
MapBoundariesServlet class forms the root of this hierarchy and does most of the tasks common to these
pages like storing and retrieving state information, detecting the page that invoked this page etc. All map
customization pages like boundaries, features etc. work on a set of transient variables in the
MapConfiguration object. These transient variables are necessary because the changes made by the
user on these pages aren’t committed unless the “update” button is hit. For example, when the user
invokes boundaries page from the features page, all changes made by the user on the features page are
sent to the boundaries page as part of URL. The boundaries servlet detects that it is called by the
features page, reads the URL parameters and stores these changes to the transient variables in the
MapConfiguration object. Only when the user hits the update button are these transient variables read
and stored into the real variables, otherwise they are simply discarded. It is important for these
customization pages to recognize their caller so that they can read URL appropriately and set proper
transient variables. That is why these pages are almost always invoked with a “_caller” parameter. To see
how map boundaries page uses map view group metadata see Figure 225.

G S

HttpServlet

(from http)

H S

AFFServlet

(from common)

MapServlet
(from map)

MapBoundariesServlet
(from map)

ReferenceMapBoundariesServlet
(from map)

ReferenceMapConfiguration
(from map)

MapConfiguration
(from map)

Themat icMapBoundariesServlet
(from map)

SearchMapBoundariesServlet
(from map)

ThematicMapConfiguration
(from map)

SearchMapConfiguration
(f rom m ap)

IMapParameters
(f rom m ap)

<<Interface>>

<<instantiates>> <<instantiates>>

<<instantiates>>

Figure 211: Hierarchy of Controller Classes Used for Boundaries Page

Date Last Printed: 9/26/06 Page 325 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.2.2.3. Hierarchy of Controller Classes Used for Features Page
Features page work essentially the same way as the boundaries page. MapFeaturesServlet forms the
base class for features pages across reference, thematic and selection maps. For complete hierarchy of
classes used for features page see Figure 212.

G S

HttpServlet

(from http)

H S

AFFServlet

(from common)

MapServlet
(from map)

MapFeaturesServlet
(from map)

ReferenceMapFeaturesServlet
(from map)

ReferenceMapConfiguration
(from map)

MapConfiguration
(from map)

ThematicMapFeaturesServlet
(from map)

SearchMapFeaturesServlet
(from map)

ThematicMapConfiguration
(from map)

SearchMapConfiguration
(from map)

IMapParameters
(f rom m ap)

<<Interface>>

<<instantiates>> <<instantiates>>

<<instantiates>>

Figure 212: Hierarchy of Controller Classes Used for Features Page

Date Last Printed: 9/26/06 Page 326 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.2.2.4. Hierarchy of Service Classes Used for Drawing Maps
Service layer forms the interface between controller and domain layers. MapDrawService (see Figure
213) class is the base class, which handles most of the tasks related to drawing maps. The controller
layer creates a MapConfiguration object and passes it on to this class. MapDrawService, then reads this
object and creates a MapKey object which is passed down to map domain. Bulk of the action of this class
takes place in the createKey method. All specializations of this class override this method and extend it.
For example ThematicMapDrawService class extends MapDrawService class and overrides the
createKey method to provide functionality specific to thematic maps. Most service layer classes are
singletons except for ThematicMapDrawService. Unlike other service classes, this class needs to provide
some extra information to map controller (e.g. related metadata) besides just the MapDisplay object and
therefore must retain that information for the duration of the request, hence making it unsuitable for usage
as a singleton.

MapService

MapService()

(from map)

MapDrawService

createKey()
getSDELayerName()
generateMap()

(from map)

ReferenceMapDrawService
(f rom m ap)

ThematicMapDrawService
(from map)

SearchMapDrawService
(from map)

GeoSearchMapDrawService
(from map)

MapItDrawService
(from map)

MapKey
(f ro m m ap)

SearchMapKey
(f rom m ap) QueryMapKey

(from map)

ThematicMapKey
(from map)

<<instantiates>>

<<instantiates>>

<<instant iates>>

<<instant iates>>
<<instantiates>>

All these services
create specialized
keys which form
an input to map
domain layer.

Figure 213: Hierarchy of Service Classes Used for Drawing Maps

Date Last Printed: 9/26/06 Page 327 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.2.2.5. Hierarchy of View Adapter Classes Used for Drawing Maps
View adapters are beans that are used by the JSPs to render the pages. MapDrawViewAdapter (as
shown in Figure 214) class forms the base of classes used for rendering map pages and contains all the
necessary information like the name of the map image, location etc. as instance variables. Just like other
beans, this class contains just the accessor (get/set) methods and doesn’t provide any other
computational/logic function.

BaseMapViewAdapter
(from map)

MapDrawViewAdapter
(from map)

ReferenceMapDrawViewAdapter
(from map)

SearchMapDrawViewAdapter
(from map)

ThematicMapDrawViewAdapter
(f rom m ap)

GeoSearchMapDrawViewAdapter
(from map)

MapItDrawViewAdapter
(from map)

Figure 214: Hierarchy of View Adapter Classes Used for Drawing Maps

5.6.12.2.2.6. Hierarchy of View Adapter Classes Used for Boundaries & Features Page
View adapters as shown in Figure 215 are used to render the boundaries and features page.

BaseMapViewAdapter
(from map)

MapBoundariesViewAdapter
(from map)

MapFeaturesViewAdapter
(from map)

SearchMapBoundariesViewAdapter
(from map) ThematicMapBoundariesViewAdapter

(from map) SearchMapFeaturesViewAdapter
(from map)

ThematicMapFeaturesViewAdapter
(from map)

Figure 215: Hierarchy of View Adapter Classes Used for Boundaries & Features Page

5.6.12.2.3. Caching
To aid performance and to avoid redrawing a map if a map with a given signature has previously been
created for some other user, mapping subsystem uses caching. This is achieved by a maintaining a table
in the data warehouse database. Once a map signature is fully determined, this table is queried to see if a
map with similar signature already exists in the table. If it does, then instead of sending a request to
ArcIMS, the name of the map and the legend image is read from this table and sent back to the browser.
If an entry does not exist for this signature, then a request is issued to ArcIMS and images created. This

Date Last Printed: 9/26/06 Page 328 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

map signature is then stored in the cache table for reuse for similar requests by other users. Table 56
describes the structure of this table:

Column Name Description
MAP_SIGNATURE Signature of the map. Primary key.
MAP_OUTPUT_FILENAME Name of the map image.
LEGEND_OUTPUT_FILENAME Name of the legend image.
LAST_MODIFIED Time stamp when the map was created/last accessed.
MAP_COUNTER Number of times this map has been accessed.
MAP_IMAGE Not used. But can be used to store the map images in database

instead of files on filesystems.
Table 56: Structure of dynamic map cache table

There are certain situations when a map is not a good candidate for caching. For example when a map
has a user defined title that map is not cached because the probability that the same title as the one
currently being specified will be reused is very low. Further, titles can be arbitrarily long and can
potentially lead to map signatures longer than that allowed by MAP_SIGNATURE column width. Also,
maps used for geography selection aren’t cached either, because selected geographies are to be
shaded, and there can be infinite number of possible geography selections. As with title, storing all the
geographies that are part of current selection, can lead to long map signatures.

5.6.12.2.4. Load Balancing
Map servers can be installed on any number of AIX machines. To achieve proper load balancing, so that
all these servers are equally loaded, IBM load balancer called edge server is used. For more information
on edge server, please see section 5.5.11 Custom Advisor for WebSphere Edge Server. It should be
noted that the presence of a load balancer is transparent to the application.

5.6.12.2.5. Services Provided/Services Used

5.6.12.2.5.1. Services Provided
1. Generate a Reference Map for a selected geography and preferences (such as boundaries, features,

labels, title etc.) for the contents of the map.

2. Perform various actions on the map such as zoom in, zoom out and pan around a map.

3. Customize the look of a map, by specifying the desired boundaries, features, labels etc. that need to
be displayed on the map.

5.6.12.2.5.2. Services Used
1. API used to define the relationship of a selected geography and its SDE layer name, get the unique

value of the spatial key (GEOID) of a selected geography etc.

2. Builders interacting with the database to get the data driven business rules such as the default
boundaries, features to be displayed for a particular boundary grouping (e.g. Census Block Hierarchy)
etc.

3. Interactions with Internet Map Server product and its Servers to get a rendered image for a given map
request.

4. Interactions with Spatial Database Engine Product to retrieve spatial data or make spatial queries.

5.6.12.3. Named Servlets
The named servlets for Reference Maps are:

• ReferenceMapFramesetServlet - Main servlet, which displays the map on user interface.

Date Last Printed: 9/26/06 Page 329 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• ReferenceMapBoundariesServlet - Servlet to select boundaries to be displayed on the map.

• ReferenceMapFeaturesServlet - Servlet to select features to be displayed on the map.

• ReferenceMapTitleServlet - Servlet to specify a user defined title on the map.

Note: all URIs are prefixed by /servlet/.

Table 57 shows the implementation servlet classes and JSPs associated with each named servlet.
URI (Named Servlet) Implementation Servlet Class JSP

ReferenceMapFramesetServlet ReferenceMapDrawServlet /rm/referencemap.jsp

ReferenceMapBoundariesServlet ReferenceMapBoundariesServlet /rm/boundaries_real.jsp

ReferenceMapFeaturesServlet ReferenceMapFeaturesServlet /rm/features_real.jsp

ReferenceMapTitleServlet MapTitleServlet /rm/maptitle.jsp

Table 57: Named Servlets Used for Reference Maps

All implementation servlet classes are found in the gov.census.aff.controller.map package.

5.6.12.4. Class Diagrams

5.6.12.4.1. Reference Map Draw Controllers
Figure 216 illustrates the controllers, services and view adapterer used in creating a reference map.
ReferenceMapDrawServlet, which is the concrete implementation of MapDrawServlet abstract class,
creates the Configuration object which is used to persist the state information in the user session.

Date Last Printed: 9/26/06 Page 330 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

G S

HttpServlet

(from http)

H S

AFFServlet

(from common)

MapServlet

fireJsp()
getLocale()
getUserSession()

(f rom map)

MapDrawServlet

buildDefaultMapConfiguration()
getDefaultGeoSelection()
getDefaultService()
getGeoSelection()
getMapConfigurationFromSession()
handleMapActions()
populateViewAdapter()
processRequest()

(f rom ma p)

ReferenceMapDrawServlet
(from map)

MapConfiguration

getBucketId()
getGeoSelection()
getMapX()
getMapY()

(from m ap)

ReferenceMapConfiguration
(from map)

MapDataService

getAllBoundaryNames()
getAllFeatureNames()
getCategoryNames()
getDefaultBoundaries()
getDefaultFeatures()
getViewGroupNames()

(from m ap)

MapDrawService

generateMap()

(from map)

ReferenceMapDrawService
(from map)

IMapParameters
(f rom m ap)

<<Interface>>

<<instantiates>>

<<uses>> <<uses>>

Base class does
most of the tasks
related to drawing a
map.

Base class
that stores
most of the
map state
information.

Base service
class that
interacts with
map domain.

Provides map view
group related
metadata.

Defines constants
used for
interaction with
user.

MapDisplayFactory
(f ro m m ap)

<<uses>>

Main entry
point to map
domain.

MapDrawViewAdapter
(f ro m m ap)

<<instantiates>>

Figure 216: Reference Map Draw Controllers

Date Last Printed: 9/26/06 Page 331 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.4.2. Map Domain Hierarchy
Figure 217 illustrates the map domain factory, builder and supporting classes used in creating reference
maps.

MapDisplayFactory

createMapDisplay()

(from m ap)
MapDisplayBuilder

buildMapDisplay()
zoomToLatLong()
buildDisplay()
buildMap()
buildMapExtent()
buildThemeSwitches()
panToDirection()
performMapAction()
zoomToPoint()
zoomToSelection()

(f rom m ap)
MapFactory

createMap()

(from map)
ViewGroupBuilder

buildViewGroup()

(f rom m ap)

IMapExtent

getMaxX()
getMaxY()
getMinX()
getMinY()

(from map)

<<Interface>>
Map

draw()
isCachable()

(from m ap)

<<Interface>>

ClickableMapDisplay

getClickPoint()
highlight()

(from m ap)

IMSThemeFlipSwitches

getOnBoundaries()
getOnFeatures()

(from map)

IMSMap

getCopyrightText()
getScaleStatement()
getSource()

(from map)Agent

execute()
getServiceName()
isImsAvailable()

(from map)

IMSService

getServiceName()

(from map)

IMSTheme

getIMSName()
getId()
isShown()
isViewable()

(from map)

IMSFeatureTheme
(f rom m ap)

MapDisplay

getDisplayHeight()
getDisplayWidth()
getMap()
getScaleLevel()
getShownBoundaries()
getShownFeatures()
toXML()

(f ro m m ap)

<<uses>>

ViewGroup

_imsService : java.lang.String
_name : String

draw()
getSignature()
getViewGroupId()
getMapView()

(from map)

MapView

draw()
getMap()
getScaleLevel()

(from map)

<<uses>>

<<builds>>

1

10

<<contains>>

<<contains>>

1 N
<<contains>>

1 1

<<contains>>

<<uses>>

<<builds>>

<<contains>>

Figure 217: Map Domain Hierarchy

Date Last Printed: 9/26/06 Page 332 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.4.3. Reference Map Boundaries & Features Controllers
Figure 218 depicts the classes used to display map boundaries and features page. For interaction with
metadata please see section 5.6.12.6.1.

G S

HttpServlet

(from http)

H S

AFFServlet

(f rom co mmon)

MapServlet

fireJsp()
getLocale()
getUserSession()

(from map)

MapConfiguration

getBucketId()
getGeoSelection()
getMapX()
getMapY()

(from map)

ReferenceMapConfiguration
(f ro m m ap)

MapBoundariesServlet

getMapConfigurationFromSession()
handleCallerPage()
populateViewAdapter()
processRequest()

(from map)
MapFeaturesServlet

getMapConfigurationFromSession()
handleCallerPage()
populateViewAdapter()
processRequest()

(from map)

ReferenceMapBoundariesServlet
(from map)

ReferenceMapFeaturesServlet
(f rom m ap)

MapDataService

getAllBoundaryNames()
getAllFeatureNames()
getCategoryNames()
getDefaultBoundaries()
getDefaultFeatures()
getViewGroupNames()

(from map)

IMapParameters
(from map)

<<Interface>>

MapDataProvider
(from map)

ViewGroupBuilder
(from map)

<<uses>>

<<uses>>Provides metadata
caching capability to
aid performance.

Interacts with MDR to
access map view
group metadata.

<<uses>>

<<instantiates>>

<<uses>>

<<instantiates>>

MapBoundariesViewAdapter
(from map)

<<instantiates>> MapFeaturesViewAdapter
(from map)

<<instantiates>>

Figure 218: Reference Map Boundaries and Features Controllers

Date Last Printed: 9/26/06 Page 333 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.5. Object Interaction Diagrams

5.6.12.5.1. Controller & Service Interaction for Drawing Reference Maps

AFF Infrastructure
Services

 :
ReferenceMapDrawServlet

 :
ReferenceMapConfiguration

 :
ReferenceMapDrawService

 :
MapDrawViewAdapter

processRequest() parseParameters()

getMapConfigurationFromSession()

buildDefaultMapConfiguration()
setGeoSelection()

setService()
setAction()

buildMapConfiguration()
setMapX()

setMapY()

setAction()

getDrawService()

getViewAdapter()
generateMap()

callBackService()

logRequest()
populateViewAdapter()

setMapGifName()
setLegendGifName()

setMapImageDir()

modifyMapConfigurationFromDisplay()
setDisplayHeight()

setDisplayWidth()
setDisplayCenterX()
setDisplayCenterY()

setMapConfigurationToSession()

fireJsp()

Parses the URL
parameters

Gets the config
object which stores
map state from
HTTP session.

Builds default
MapConfiguration
object if the user is
creating a map for the
first time and sets
default geo selection,
IMS service name etc.

If state information
already exists then
updates it with the
latest user action.

Gets the instance of
service class to be
used to generate
reference map.

Creates the view
adapter bean to
be used by JSP.

Call to the service layer to
generate the map. For
details of how this layer
interacts wi th map domain,
see the next OID.

In some instances it is
important to call service
layer more than once.
This method provides
the opportunity to
collect any extra
information this service
may provide besides
returning the
MapDisplay object.

Logs the current map
request to the user stats
log f ile.

Prepares the view adapter
bean to be used by JSP in
rendering the reference
map page.

Modifi es the
MapConfiguration
object with the l atest
map state l ike extent,
zoom level etc.

Sets the current
MapConfiguration
object back to HTTP
session, so it can be
used for any subsequent
requests.

Finally calls the JSP
to render the map to
be sent back to the
user.

Figure 219: Controller and Service Interaction for Drawing Reference Maps

Comment: Headings are presented
in descending heading styles
beginning with “Heading 1”. These
styles are found in the styles drop-
down menu located left of the font
name and size windows above.

Date Last Printed: 9/26/06 Page 334 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.5.2. Service & Domain Interaction for Drawing Reference Maps

 :
ReferenceMapDrawServlet

 :
ReferenceMapDrawService

 :
MapDisplayFactory

 :
MapDisplayBuilder

 : MapDisplay : MapKey

generateMap()
createKey()

getMapKey()
MapKey()

setIMSHost()
setIMSPort()

setGeoSelection()

setMapAction()

setService()

setBoundaries()
setFeatures()

createMapDisplay() buildMapDisplay()
buildDisplay()

buildMap()

setMap()
performMapAction()

performHighlight()

refresh()

Call to map domain to
create a MapDisplay
object which is returned
back to the controller.

See Map Domai n
In teracti on 1 -
Build Display
diagram.

See Map Domai n
Interacti on 3
- Ref re sh
dia gra m.

See Map Domain
Interaction 2 -
Bui ldMap
diagram.

At this point the
map represents the
cumulative effect of
previous map state
and the current user
action and is ready
to be drawn by
sending request to
IMS.

Figure 220: Service & Domain Interaction for Drawing Reference Maps

Date Last Printed: 9/26/06 Page 335 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.5.3. Map Domain Interaction 1 – BuildDisplay

 :
MapDisplayBuilder

 :
ClickableMapDisplay

 : MapKey :
MapExtentFactory

 : MapExtent

buildDisplay()
ClickableMapDisplay()

getMapImageWriteDirectory()

setWorkDirectory()
getImageName()

setImageName()
buildMapExtent()

getDisplayExtentType()
createMapExtent()

setGeoCenter()

setWidth()

setHeight()

isCacheOn()
setUseCache()

getCacheTable()
setUseCacheTable()

In itiali ze the MapDisp lay object wi th the
name of the map image to be g enerated,
directory etc. Also if this is not a d efault
map, i niti al ize the extent of th is display so
th at current user a ction can be com puted
in its reference. At thi s point an attem pt is
being made to restore users last state in
te rms of map domain objects.

Figure 221: Map Domain Interaction 1 – BuildDisplay

Date Last Printed: 9/26/06 Page 336 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.5.4. Map Domain Interaction 2 – BuildMap

 :
MapDisplayBuilder

 : MapFactory :
ViewGroupBuilder

 : MapKey : ViewGroup

buildMap()

createMap()
buildViewGroup() getService()

findViewGroupIdfromService()

ViewGroup()
setName()

getMapAction()

createThemeCatalog()

buildThemeCatalog()

buildThemeCatalogFromKey()

setThemeCatalogue()

If this a new map
request, get all
the themes and
set the defaults
to be displayed
on map.

Else build the
theme catalog
ba sed on the
bo undaries an d
features set on
the key.

Finally set the
catalog on the
ViewGroup object.

Figure 222: Map Domain Interaction 2 – BuildMap

Date Last Printed: 9/26/06 Page 337 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.5.5. Map Domain Interaction 3 - Refresh

 : MapDisplay : ViewGroup : MapView : IMSMap :
MapServerDatabaseInterface

 :
ImsSocketInterfaceImpl

 :
MapDisplayBuilder

refresh()
isCachable()

getMapView()

isCachable()
getMap()

isCachable()

writeSignature()

readDyMapCache()

draw()
getMapView()

draw()
getMap()

draw()
toXML()

execute()
setImageName()

setLegendImageName()

writeDyMapCache()

If the map is
cachable, figure
ou t its signature.

Read the cache
table to see i f th is
map ha s bee n
p revio usly created .

If the map isn't
found in the
cache, create i t.

Get the XML
request to be sent
to ArcIMS.

Open a socke t to
IM S and send the
XML requ est.

Read the response
back from IMS and
set it on the
MapDisplay object.

Finally, write this
map to the cache
for future reuse.

Figure 223: Map Domain Interaction 1 – Refresh

Date Last Printed: 9/26/06 Page 338 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.5.6. Controller & Service Interaction for Boundaries & Features
Figure 224 shows the interaction between service and controller layers to fetch map view group and
boundary defaults etc. Database table map_view_group_category stores all the map view group
categories, which are associated to view groups via map_view_group table. Table map_geo_theme
stores all the boundaries per bucket, which are associated to view groups via
map_view_group_geo_theme table. See Figure 225 for a subset of metadata tables, which are used for
map view group related metadata. Table map_view_group_geo_tree associates a view group to a geo
tree and is used by the application to draw relevant boundaries and features.

AFF Infrastructure
Services

 :
ReferenceMapBoundariesServlet

 :
MapDataService

 :
MapBoundariesViewAdapter

 :
MapDataProvider

processRequest() parseParameters()

handleCallerPage()

getMapConfigurationFromSession()

setUpTransientVariables()

setMapConfigurationToSession()

populateViewAdapter()

getDataService()

getCategoryNames()

setCategoryNames()

fetchRefMapViewGroupBucketIdsCategoryNames()

getViewGroups()
fetchRefMapViewGroupDescriptionswithCatName()

setViewGroups()

getAllBoundaryNames()
fetchAllRefMapBoundaryThemeNames()

setAllBoundaries()
getAllBoundaryLabelNames()

fetchAllRefMapBoundaryLabelThemeNames()

setAllBoundaryLabels()

fireJsp()

Parses the URL
parameters

Map custo mi za ti on opt ions l ike boundaries and features
appe ar on separate ta bs. User can switch be twe en
boun darie s, features, ti tle pa ges bu t ca n h it cancel. Thats
 wh y the choices ma de while toggl ing between these
different o pti on s are sto red i n se parate t ransien t va riables
in the MapCo nfi gu rat ion object . Onl y whe n the user h its
upda te , re al va ri abl es a re up dated with these t ransien t
variables, else these tra nsi en t variables are simply
disca rded.

There are se veral wa ys to
ge t to boundaries page
either from the map pag e
via i nvoking the boundaries
menu or via other tabs li ke
features, title etc. This
method ha ndles invocation
fro m different pages.

Gets the config
object which stores
map state from
HTTP session.

Sets the current
MapConfiguration object
back to HTTP session, so it
can be used for drawing
the map when user hits the
update button.Builds the view adapter bean to

be used for displaying the JSP.
Gets the categories, view groups,
boundaries etc. from the
MapDataService and sets them on
the bean.

Finally calls the
JSP to render the
boundaries page to
be sent back to the
user.

Calls for features pa ge
a re very simi lart to
b ound aries p age
e xce pt that fea tures
p age does not li st
categori es and view
g ro up.

Figure 224: Controller & Service Interaction for Boundaries and Features

Date Last Printed: 9/26/06 Page 339 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.6. Data Model

5.6.12.6.1. Supporting metadata
1. Entity to IMS Layer name associations

2. View Group metadata

Figure 225 shows the entities used in storing metadata used to drive reference maps followed Table 58
which lists a brief description of how these tables are used.

Figure 225: Map View Group Metadata Tables

Table Purpose
MAP_GEO_THEME Controls what individual boundaries and features are

available in the boundary/feature pop-up menu per bucket.
MAP_LAYER Associates SDE Layers to geography coordinates and layers

by year and program.
MAP_LAYER_GEO_TREE_GSL Provides scale and zoom information by map layer and

geographic summary level.
MAP_VIEW_GROUP Controls what boundary groupings are available per

survey/year.

Date Last Printed: 9/26/06 Page 340 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Table Purpose
MAP_VIEW_GROUP_CATEGORY Controls what survey/year combinations are available in the

boundary/feature pop-up menu.
MAP_VIEW_GROUP_GEO_THEME An association between Map View Group and Map Geo

Theme.
MAP_VIEW_GROUP_GEO_TREE An association between Map View Group and Geo Tree.
MAP_VIEW_GROUP_GEO_TREE_GSL An association between Map View Group and Geo Tree GSL.

Table 58: Metadata Tables Used in Mapping Subsystem

5.6.12.6.2. Sample Map View Group Queries
The image below shows a screen shot of a boundaries page. The queries, which follow depict how each
part of the page is drawn.

Figure 226: Sample Boundaries Page for Reference Map

Date Last Printed: 9/26/06 Page 341 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.12.6.2.1. Finding all map view group categories for reference maps:
This populates the drop down box on the boundaries page (#1 in screen show above).
select gb.bucket_id, mvgc.disp_label
from geo_bucket gb, map_view_group_category mvgc
where gb.disp_label = mvgc.disp_label
and mvgc.rm_ind = ‘Y’

5.6.12.6.2.2. Finding view groups associated with a map view group category
Following query retrieves all the view groups associated with a category (#2 in screen shot above). These
view groups appear as radio buttons on the map boundaries page. Each view group is associated with a
map service and has certain default boundaries and features. These boundaries and features are
automatically turned on when the user selects this view group.
select mvg.ims_service_name, mvg.disp_label
from map_view_group_category mvgc, map_view_group mvg
where mvgc.mvgc_name = mvg.mvgc_name
and mvgc.disp_label = ?
and mvg.rm_ind = ‘Y’
and mvg.disp_label is not null

5.6.12.6.2.3. Finding default boundaries associated with a map view group
select
mgt.mgth_id
from
map_view_group mvg,
map_geo_theme mgt,
map_view_group_geo_theme mvggt,
map_view_group_category mvgc
where
mgt.type_code = ‘BT’
and mgt.ims_layer_name = mvggt.ims_layer_name
and mgt.bucket_id = mvggt.bucket_id
and mvggt.dflt_ind = 'Y'
and mvggt.mvg_id = mvg.mvg_id
and mvg.rm_ind = ‘Y’
and mvg.ims_service_name = ?
and mvg.disp_label = mvgc.disp_label
and mvgc.disp_label = ?

Date Last Printed: 9/26/06 Page 342 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.13. Create a Thematic Map

5.6.13.1. Functional Description
This document describes the creation of Thematic Maps in the AFF application. The creation of a
thematic map requires the selection of a geography, a shade-by geography type, and a theme. If there is
no explicit selection of these elements then default values are used.

As with Reference Maps, once a thematic map is rendered, the user has the ability to customize
Boundaries, Features and the Title. Unlike Reference Maps the user can also customize data classes and
how they appear on the map including the ranges that each data class spans.

Just like other maps within AFF, the user has the ability to view thematic maps at various scales and can
also pan, zoom in and zoom out. The identify functionality, that is specific to thematic maps, provides the
ability to identify geographies within the map and the associated data values.

Since thematic maps represent tabular data, the user has the ability to download the data and the
associated geographies in table format. The user can select between excel or comma delimited text file
format. In addition, the user can download the map and legend as a PDF document.

Depending on the classification method used, each geography is assigned to a class. The number of
classes used can be specified by the user in the range of 2-7. Each class is then assigned a color. All
geographies falling into a particular class are then shaded in that color. AFF currently supports fours
types of classification methods: Natural Breaks, Equal Interval, Quantile and User Defined. These
standard statistical methods govern the assignment if a particular geography to a class.

5.6.13.1.1. Natural Breaks
The Natural Breaks classing method is the default method used within AFF. The Natural Breaks classing
method identifies groupings that naturally exist in the data. Conceptualy, first the frequency distribution of
the data is determined, then the breaks are determined by the sharpest breaks and also the number of
classes used for the map.

5.6.13.1.2. Equal Interval
The Equal Interval classing method assigns the same value range for each class. The data range is
equally divided between the classes that are selected.

5.6.13.1.3. Quantile
This method divides data values such that all resulting classes contain equal number of data samples.
For example, if all 20 counties in a state are to be assigned into 5 classes using the quantile classification
method, then the class breaks would be calculated such that each class contains 4 counties.

5.6.13.1.4. User Defined
The last classification method allows the user to control where the class breaks occur. This method is
helpful when there is one or more data values of particular interest to the user and can be shown as a
different data class on the thematic map.

When new data is selected and classification type is user defined, the application must redefine the class
breaks based on the new data ranges. In other classification methods, ArcIMS handles the data change
internally.

5.6.13.2. Design Approach
Most of the design considerations that apply to thematic maps also pertain to other kinds of maps. As a
consequence, many of mapping sub-components are shared with reference maps and other map types.
To avoid repetition of this general design information, this section will focus on areas that are not only
unique to thematic maps but also are of significant impact to the implementation.

Date Last Printed: 9/26/06 Page 343 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.13.2.1. Service Layer
In other sub-components of AFF, the service layer is typically implemented as a singleton. For thematic
maps, there is some state information that is stored at the service layer as a result of some additional
calls to the map domain. Because of this, the thematic map service (ThematicMapDrawService) is not
implemented as a singleton object. At the controller level, after the MapDisplay object is obtained, there
is an additional call to the service layer that retrieves this additional information using the method
ThematicMapServlet.callbackService(). For reference maps this method in not overwritten in
the subclass ReferenceMapServlet.java so the empty implementation in the super class
(MapDrawServlet.java) is used.

5.6.13.2.2. Caching
As with other map types, thematic maps are also cached for performance. The caching signature for
thematic maps include additional attributes that further maps a thematic map unique. These additional
attributes are classification type, number of classes, and color scheme. Since users can update these
attributes, it’s important to differentiate by using this information in the signature for caching. The method
MappableStatistics.getSignature() contains all the logic to retrieve these additional attributes.

5.6.13.2.3. createKey() method
This section discusses the high level steps that occur in the Key Creation method of thematic maps. This
method is where the important operations occur when a thematic map is created. The method can be
found in ThematicMapDrawService.createKey().

The major steps that are executed in this method are:

1. Determine the selected geography.

2. Determine list of relevant GEO Ids to be displayed (See section below for detail information on how
this is achieved).

3. Retrieve the data associated with each GEO ID based on the theme selected. This returns a
hashtable of results keyed by the GEO IDs.

4. Based on the user action, this step determines the map-shading layer that will be used to display the
appropriate level of detail.

5. There is logic that treats Alaska as a special case. Since Alaska is so big there is special treatment of
projected layers based on the zoom level. The AFF spatial database contains pre-projected layers for
some lower level geographies in Alaska, e.g. County subdivision. AFF uses these layers for shading
selected geos in Alaska.

6. The next step involves classification of the data values that are returned from the data warehouse.

7. The method then return a key object to the calling method generateMap() in the parent service
class.

5.6.13.2.4. Retrieving Geography IDs
As reflected in the above section, in order to render a thematic map the AFF application must determine
the data that should be reflected for each geo within the map. In order to obtain the data, there must be a
list of geos that must be used to query the data warehouse for values.

There are several steps that are associated with the retrieval of the geo ids that should be displayed on
the thematic map. The first step is to determine if the selected geography type is nesting or non-nesting.
Nesting means that the selected summary level (display by) nests entirely within the selected geography.
For example, if the display by is “county” and the user selects Ohio, this is a nesting summary level since
counties fall completely with a single state. A non-nesting example is if the user selected a congressional
district (CD) by county. In this case since CDs can cross county boundaries the geography is non-nesting.

Below is the SQL that is used to determine if a geo type completely nested with a summary level.

Date Last Printed: 9/26/06 Page 344 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select tm_nesting_ind
from geo_tree_structure gts
where gts.parent_gsl_code = '040'
and gts.gsl_code = '050'
and
 (select dsgt.tree_id from dataset_superset_geo_tree dsgt, dataset ds
 where ds.DS_NAME='DEC_2000_SF1_U'
 and dsgt.SSM_NAME='TM_GEO_DISP' and dsgt.dssp_name=ds.dssp_name)
= gts.tree_id

The purpose of determining nesting/non-nesting geography is done in order to determine if AFF geo tree
metadata can be used to retrieve the list of geographies in the area of interest. If the selection is non-
nesting the application must then perform some additional logic steps.

• Determine if the geo within geo (GWG) data can be used to determine list of geographies that should
be included in the area of interest. This method is used to make the determination:
GeoInGeoService.getParentSummaryLevels(). If one or more parents summary levels for
the area of interest are returned then the GWG service is applicable.

• If the GWG service can be used, the logic uses the following method to retrieve the geo ids:
GeoInGeoService.getGeoInGeoList().

• Otherwise interactions with Spatial Database Engine (spatial query) must be used to determine the
list of geographies. This is more expensive and requires several requests to ArcIMS. The geometry of
the area of interested must be determined first, and then the spatial query must be run to return the
geo ids. This is also depended on the layer that must be used for the map. There is more information
in the next section regarding layers.

All the above operations occur in the key creation method for thematic maps,
ThematicMapDrawService.createkey(). There is a well-defined API that is used to define the
relationship of a selected geography and its SDE layer name and to get the unique values of geo ids
based on the users selection.

It’s also important to note that the “data by” summary levels are not data driven, i.e., the list does not vary
depending on the selected geography.

5.6.13.2.5. Identify
The identify functionality allow a user to click on a map to identify a geography and the associated data
that is represented in the thematic map. This functionality is heavily dependent on client side JavaScript.
JavaScript is used to determine the X and Y coordinated that the user clicked on within the map. These
coordinated are used by the application to determine the appropriate geography and related data.

5.6.13.2.6. Layers
In AFF, the geographic data associated with maps is stored in SDE as layers. Layers represent different
type of information such as lines, polygons or points that can appear on maps. This information can vary
in detail depending of the zoom level and other factors. In AFF the SDE Layer name are stored in a table
in the MDR called MAP_LAYER_GEO_TREE_GSL. This table associates the geography summary level,
tree id and zoom level with specific SDE layer. At zoom level 10 the AFF application uses projected
layers.

5.6.13.2.7. Virtual Table Generator (VTG)
Thematic map data is retrieved from views that exist in the data warehouse. In order for the thematic map
to be available in AFF it must be specified using the VTG in a similar way that other tables are specified
using the VTG. The specification also determines the subjects that a thematic map is related to. Please
refer to VTG documentation for more information.

Note: only demographic maps are specified using the VTG, reference maps are not specified using the
VTG.

Date Last Printed: 9/26/06 Page 345 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

A sample thematic map spec file can be found below.

5.6.13.2.7.1. Sample thematic map spec file
* Thematic Map Spec dec_2000_sf1_u_m00421.txt
** Reverse-engineered from AFF Metadata Repository on 10/24/2002
** Change Log
** --
OWNER: XYZ
REPORT_TYPE: TM
DATASET: DEC_2000_SF1_U
MAP_NAME: DEC_2000_SF1_U_M00421
MAP_THEME_NBR: M00421
MAP_DISP_NBR: TM-P015C

SUBJECTS:
SUBJECT_ITEM=T2032
SUBJECT_ITEM=T2070
SUBJECT_ITEM=T2203
:SUBJECTS

FOOTING: Source: U.S. Census Bureau, Census 2000 Summary File 1, Matrix P12C.

USE_SQL_NVL:
OMIT_MATRIX_NAME_IN_FORMULA:

MATRICES:
MATRIX_NAME=DEC_2000_SF1_U_P012C ABBR=P12C
:MATRICES

CELL: PCT: DECIMAL_PLACES=0 P12C[2] / P12C[26]

5.6.13.3. Named Servlets
Each of the servlet implementation classes and JSP below is reused for CWS thematic maps. There are
different named servlets that follow the same naming but are prefixed with CWS. For example,
ThematicMapFramesetServlet would be CWSThematicMapFramesetServlet and the context defined in
the servlet configuration is CWS instead of TM. This allows special treatment of CWS thematic maps
behavior.

URI (Named Servlet) Implementation Servlet Class [1] JSP

ThematicMapFramesetServlet ThematicMapDrawServlet /tm/thematicmap.jsp

ThematicMapClassesServlet ThematicMapClassesServlet /tm/thematicmapclasses.jsp

ThematicMapBoundariesServlet ThematicMapBoundariesServlet /tm/thematicmapboundaries.jsp

ThematicMapFeaturesServlet ThematicMapFeaturesServlet /tm/thematicmapfeatures.jsp

ThematicMapTitleServlet ThematicMapTitleServlet /tm/thematicmaptitle.jsp

IdentifyResultServlet IdentifyResultServlet /tm/IdentifyResult.jsp

CWSThematicMapFramesetServlet ThematicMapDrawServlet /tm/thematicmap.jsp

CWSThematicMapClassesServlet ThematicMapClassesServlet /tm/thematicmapclasses.jsp

CWSThematicMapBoundariesServlet ThematicMapBoundariesServlet /tm/thematicmapboundaries.jsp

CWSThematicMapFeaturesServlet ThematicMapFeaturesServlet /tm/thematicmapfeatures.jsp

CWSThematicMapTitleServlet ThematicMapTitleServlet /tm/thematicmaptitle.jsp

CWSIdentifyResultServlet IdentifyResultServlet /tm/IdentifyResult.jsp

[1] All implementation servlet classes are in the gov.census.aff.controller.map package.

Date Last Printed: 9/26/06 Page 346 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Table 59: Named servlets for Thematic Maps

5.6.13.4. Class diagrams
The class diagrams below show the object model for Thematic Maps. The diagrams include major
classes that the application uses for the Thematic Map functionality. The objects have been divided into
two groups/layers: controller level objects and service/domain level objects. Other map types that exist in
AFF extend many of the same base classes thematic maps use.

AFFServlet
(f rom co mmon)

<<Http_Servlet>>

MapServlet
(from map)

IMapParameters
(from m ap)

<<Interface>>

MapDrawServlet
(from map)

ThematicMapDrawServlet
(f rom m ap)

ThematicMapConfiguration
(f rom m ap)

ThematicMapBoundaries Servlet
(f rom m ap)

<<uses >>

MapBoundariesServlet
(from map)

ThematicMapClassesServlet
(from map)

IdentifyResultServlet
(from m ap)

MapFeaturesServlet
(from map)

ThematicMapFeaturesServlet
(from m ap)

MapTitleServlet
(from m ap)

ThematicMapTitleServlet
(from m ap)

<<uses>>

MapConfiguration
(f rom m ap)

<<instantiates>> <<uses>><<uses>>

Figure 227: Class diagram of major controller level classes for thematic maps

The typical AFF model is adopted with thematic map controller level classes. They all extend the
AFFServlet class. Common mapping functionality is abstracted out into common classes that are
extended by other map types. These include MapServlet, MapDrawServlet,
MapBounderiesServlet, MapFeaturesServlet and MapTitleServlet.

The object model below shows how the main service layer class (ThematicMapDrawService.java)
uses other services to build the key (ThematicMapKey.java). There is some generic functionality map
that is implemented in the super class MapDrawService, which is, extended by the custom service class
ThematicMapDrawService.java.

Date Last Printed: 9/26/06 Page 347 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

MapService
(from map)

MapDrawService
(from map)

QueryM apK ey
(from map)

ThematicMapDataProvider
(f rom map)

-$_sSpanishMapDataProvider

ThematicMapBuilder
(f rom map)

MapDisplayFactory
(from map)

-$_sMapDisplayFactory

MapDisplayB ui lder
(f rom map)

GeoSpatialLocator
(from map)

-$_sSpanishGeoSpatialLocator

<<uses>>

TreeIdGeographyService
(f ro m search)

MapFactory
(from map)

<<uses>>

-$_sMapFactory

<<uses>>

MapExtentFactory
(f ro m map)

-$_sMapExtentFactory

ClassificationValuesFactory
(from map)

ThematicMapKey
(from map)

ThematicMapDrawService
(from map)

<<uses>>

<<instant iates>>

GeoInGeoService
(from search)

<<instantiates>>

<<uses>>

<<uses>>

Figure 228: Class diagram of major classes for service and domain layer for thematic maps

5.6.13.5. Sequence diagrams
The three sequence diagrams below show the interaction of objects for the creating thematic maps. Only
significant object interactions are shown in the diagrams.

The interaction that is depicted in the three sequence diagrams assumes the following:

• The selection is a non-nesting;

• GWG is not applicable; and

• The map is not cached.

Date Last Printed: 9/26/06 Page 348 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 :
MapDrawServlet

 :
MapDrawService

 :
ThematicMapDrawService

 :
TreeIdGeographyService

 :
ThematicMapDataProvider

 :
GeoInGeoService

 :
GeoSpatialLocator

 :
MapDisplayFactory

generateMap(mapConfiguration)
createKey(mapConfig)

createKey(aConfiguration)
getGeoEntity(treeId, geoId, locale)

fetchLayerNames(treeId, gslCode, currentZoomLevel, selectedGeoId)
getParentSummaryLevels(context, dsName, childSummaryLevel, locale)

fetchSpatialColumnValues(layerName, geometry)

fetchLayerNames(treeId, gslCode, currentZoomLevel, selectedGeoId)

Continued in
next diagram

createMapDisplay(mapKey)

Figure 229: Sequence diagram showing create a thematic map (1 of 3)

 :
MapItDrawService

 :
MapDisplayFactory

 :
MapDisplayBuilder

 : MapFactory :
ThematicMapBuilder

 : MapDisplay

createMapDisplay(mapKey)
buildMapDisplay(mapKey)

buildMapDisplay(mapKey)

buildMap(mapKey)

createMap(mapKey)

buildQueryMap(mapKey)

performMapAction(mapDisplay , mapKey)

performHighlight(mapDisplay, mapKey)

setMap(aMap)

refresh()

Continued in
next diagram

Figure 230: Create a thematic map continued (2 of 3)

Date Last Printed: 9/26/06 Page 349 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 :
MapDisplayBuilder

 : MapDisplay :
MapServerDatabaseInterface

 :
MappableQueryMap

 : ThematicMap : IMSMap

refresh()
writeSignature()

readDyMapCache(aSignature, isMapCounter, aCacheTableName, locale)

doDensityTest()

draw(aDisplay)

writeDyMapCache(mySignature, myFilename, aLegendFileName, isMapCounter, locale, aCacheTableName)

draw(aDisplay)

sendImsRequest(request, aDisplay)

execute(reqString)

Figure 231: Create a thematic map continued (3 of 3)

Date Last Printed: 9/26/06 Page 350 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.13.6. Data model
Many of the tables that are included in this data model are shared with other map types. The tables that
are specific to thematic maps are: MAP_THEME, THEMATIC_MAP.

Figure 232: Data Model for thematic maps

The table below describes how each of the tables above is used by the application for thematic maps.
Most of the entities are shared with other map types.

Table Purpose
MAP_THEME Supports the identify functionality. Metadata such as

unit of measure and the display name of the theme.
THEMATIC_MAP Controls all the available thematic maps within AFF by

dataset.

Date Last Printed: 9/26/06 Page 351 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Table Purpose
MAP_GEO_THEME Controls what individual boundaries and features are

available in the boundary/feature pop-up menu per
bucket.

MAP_LAYER Associates SDE Layers to geography coordinates and
layers by year and program.

MAP_LAYER_GEO_TREE_GSL Provides scale and zoom information by map layer and
geographic summary level.

MAP_VIEW_GROUP Controls what boundary groupings are available per
survey/year.

MAP_VIEW_GROUP_CATEGORY Controls what survey/year combinations are available in
the boundary/feature pop-up menu.

MAP_VIEW_GROUP_GEO_THEME An association between Map View Group and Map Geo
Theme.

MAP_VIEW_GROUP_GEO_TREE An association between Map View Group and Geo
Tree.

MAP_VIEW_GROUP_GEO_TREE_GSL An association between Map View Group and Geo Tree
GSL.

Table 60: List of tables used by Thematic Maps and their purpose

Date Last Printed: 9/26/06 Page 352 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.14. User Activity Logging

5.6.14.1. Functional Description
The objective of the user activity logging system is to collect statistics on the usage of the American Fact
Finder web application and analyze the results offline. Data about tables and maps requested by users is
collected along with information about the datasets, characteristic iterations, geographies by summary
level, economic census tables, thematic map themes, etc.

Logging occurs only on the result pages. The path taken by a user to arrive at a particular table or map is
not logged. In some cases, user selections result in tables that span multiple pages. When this occurs,
all of the tables requested are logged once, and navigation between the pages is not logged. Similarly in
maps, a user can select a map and then zoom into or pan to a different area of the map. The system only
logs the initial creation of the map, not any modifications to the map.

The user activity logging system is broken down into two parts. In real-time, user requests are logged in
XML format to a log file. A new set of log files is generated each night at midnight. When a server is
restarted, the log files for the previous day are parsed and logged into the user statistics database.

5.6.14.2. Design Approach
The user statistics logging subsystem uses various third-party components in order to collect user
statistics. The components include:

• Log4j Module – Package available from Apache Software Foundation to enable customized logging
at runtime.

• Zeus utility – An open-source Java-to-XML binding tool.

See Section 5.4.3. Technical and Infrastructure Components for more details on third-party components.

The following figure describes, at a high-level, the process of how user requests are entered into the user
stats database. When a user makes a request that is to be logged, the AFF application, using the Log4j
module, encodes the user request as an XML entry using the marshal() method form the Zeus utility. The
format of the XML entry is driven by a DTD file. Multiple XML files are created, one for each clone
instance of the application. At midnight of every day, the logs are replaced with new files. The previous
day’s set of logs files are processed when the server is restarted, by a utility application. The utility
application parses each XML file, creating Java objects representing the XML entry using the unmarshal()
method from the Zeus utility. Finally, the request is inserted into the appropriate tables in the user
statistics database using JDBC.

Figure - User Activity Logging Sequence
Version - 1.0 Date - 2005-05-26

Log4j
Module Multiple XML

Flat FileAFF Utility Application (on the server)

XML
Document

Zeus
Utility Oracle

Database

JDBC

Java Classes

Figure 233: High-level sequence of events from start to finish

The log record contains the following elements (some elements may not be included depending on the
context of the request):

• Request Info

• Session Id

Date Last Printed: 9/26/06 Page 353 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Context

• Request Type

• Date

• Download Format

• Complete Download

• Dataset

• Bucket Id

• Referrer

• Language

• User Agent

• IP Address

• Table Info

• Table Name

• Characteristic Iteration

• Econ Info

• Code Type

• Code Value

• Geography Info

• Summary Level

• Geographic Component

• Count of geographies for summary level

• Map Info

• Geography Id

• Display by

• Service Name

• Theme Name

In order for the application to only log the initial request for a table or map, a special “REDOLOG”
parameter is maintained in the session. This parameter is set to false when a request is logged. It is only
set to true if certain URL or session parameters change, depending on the context. This extra parameter
guards against the user refreshing a result page multiple times and having it logged each time. The
following table lists the parameters that cause the “REDOLOG” parameter to be set to true, which in turn
marks the request as “LOGGABLE”.

Context Parameter Description
ds_name Dataset Name
geo_id Geography Id
mt_name Matrix Table Name
reg Race or Ethnic Group

DT

gc_url Geography Component

Date Last Printed: 9/26/06 Page 354 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Context Parameter Description
ds_name Dataset Name
geo_id Geography Id
qr_name Quick Report Name
reg Race or Ethnic Group

QT, ADP, MYP,
NP, ST, IP

gc_url Geography Component
ds_name Dataset Name
geo_id Geography Id
mt_name Matrix Table Name

GCT, GRT

reg Race or Ethnic Group
ds_name Dataset Name
geo_id Geography Id
dataitem Data Item
reg Race or Ethnic Group

CT

gc_url Geography Component
ds_name Dataset Name
geo_id Geography Id GQR

qr_name Quick Report Name
ds_name Dataset Name
qr_name Quick Report Name IQR

NAICS, NAICS2002, SIC, MFG, MATFUEL, CONKB, CONTOB Industry Codes
ds_name Dataset Name
geo_id Geography Id IBQ

NAICS, NAICS2002, SIC, MFG, MATFUEL, CONKB, CONTOB Industry Codes
ds_name Dataset Name
ib_code Generic Industry Code
qr_name Quick Report Name

PQR

NAICS, NAICS2002, SIC, MFG, MATFUEL, CONKB, CONTOB Industry Codes
geo_id Geography Id

RM
service_name Service Name
geo_id Geography Id
service_name Service Name
dby Display By

TM

tm_name Thematic Map Name
geo_id Geography Id
vt_name Virtual Table Name BF

lang Language
Table 61: Context sensitive parameters for REDOLOG

5.6.14.3. Named Servlets
There are no named servlets for the user statistics subsystem. All of the logging work is handled in the
base servlet, AFFServlet.

Logging can be turned on/off with an init parameter in web.xml. If “LOGGING” is set to true in web.xml for
a named servlet, then the logRequest() method in AFFServlet will be invoked.

Date Last Printed: 9/26/06 Page 355 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.14.4. Class Diagrams
The following class diagrams show a high-level relationship amongst the classes for the user activity
logging subsystem. Since there are two parts to the subsystem, the real-time logging of user requests
and the off-line processing of the log file, the diagrams are split into sections.

5.6.14.4.1. Real-time logging of user requests
When a servlet is marked to be logged via an init parameter in web.xml, the base class, AFFServlet,
invokes the logRequest(…) method.

LogHydrateUtil
getLogQueryImpl()
getLogQueryImpl()
getRequestData()
sendBF()
sendCT()
sendDT()
sendGCT()
sendGQR()
sendIBQ()
sendIQR()
sendPQR()
sendQT()

AFFServlet

logRequest()
writeLogEntry()

<<Http_Servlet>>

Logger

error()

<<uses>>

Rrs
(from logging)

<<Interface>>
Rps

(from logging)

<<Interface>>
Rms

(from logging)

<<Interface>>
Rgs

(from logging)

<<Interface>>

Lq
(from logging)

<<Interface>>

Base class for
all AFF Servlets

RequestDataBean
(from logging)

LqImpl
marshal()

<<instantiates>>

RpsImpl
(f rom l oggin g)

<<uses>>

RrsImpl
(f ro m l ogging)

RmsImpl
(from lo gging)

RgsImpl
(from logging)

<<instantiates>>

SaffFacts
(f rom navig ation)

<<uses>>

MapDrawServlet
(from map)

<<uses>>

Special case
for maps

Special case
for fact sheets

Figure 234: Class Diagram for Real-Time Logging of User Requests

A variation in this model is the logging of SAFF and CWS Fact Sheets. Fact sheets do not have session
managers associated with them. Therefore, all of the information to be logged comes from URL
parameters, not a UserSession object. The request is logged in a similar manner as quick tables (QT).
The SAFFFacts servlet utilizes the sendQT() function to create the LqImpl object to be logged in XML
format.

Another variation in this model is the logging of thematic and reference maps. There are certain
parameters that need to be logged, such as service name, which are only known to the mapping servlets.
Also, it is possible to retrieve a thematic map without choosing a geography or theme. The default
selections are inherent to the map servlet and unknown to the base class, AFFServlet. Therefore, the
method call to LogHydrateUtil must be made specifically in the map servlet.

5.6.14.4.2. Off-line processing of log files
When an AFF node is restarted, a new set of log files is created, one for each clone. The old log files are
then processed into the user statistics database. The name of the log file is passed as a parameter to the
‘main’ method in XMLUtil.

Date Last Printed: 9/26/06 Page 356 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Company

+ Company()
+ addUserAgent()

(from client)

RobotInfo

+ RobotInfo()
+ addCompany()

(from client)

XMLUtil

+ main()
- checkFile()
- processFile()
- sendLogsToDB()
- setup()

(from clie nt) DBUtil

+ LogToDB()
+ buildRobotInfo()
+ logServerActivity()

(f rom cli ent)

<<instantiates>>

<<instantiates>>

LqImpl

+ unmarshal()

(from logging)

<<instant iates>>

Lq
(from logging)

<<Interface>>

Figure 235: Class Diagram for Off-Line Processing of Log Files

5.6.14.5. Sequence Diagrams
The following sequence diagrams highlight the main interactions among classes with the purpose of
logging the attributes of a user request to an XML file.

Since there are two parts to the subsystem, the real-time logging of user requests and the off-line
processing of the log file, the diagrams are split into two subsections.

5.6.14.5.1. Real-time logging of user requests
When a servlet is marked to be logged in web.xml, the logRequest(..) method is invoked. This method
handles parsing the attributes to be logged from the URL and user session depending on the AFF
context. The methods also creates the Java object (Lq) to be written to the XML file using the error()
method available in the Log4j module.

Date Last Printed: 9/26/06 Page 357 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 : AFFServlet :
LogHydrateUtil

 : LqImpl log : Logger

logRequest(AFFParameters, rf, ua, ip)

getLogQueryImpl(AFFParameters, fmt, req, ref, ua, ip)
create()

populate()

writeLogEntry(LqImpl)

marshal(StringWriter)

error(StringWriter)

LqImpl

Figure 236: Sequence diagram real-time logging of user requests

5.6.14.5.2. Off-line processing of log files
The off-line processing of the log files is initiated by a utility application invoked when the server is
restarted. The RobotInfo hashtable is built once per log file and shared among all requests. For each
request in the log file, the XML entry is unmarshalled into a Java object and then logged into the user
stats database.

Date Last Printed: 9/26/06 Page 358 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 : XMLUti l : DBUtil : LqImpl

main(args)

checkFile(fileName)

setup(args)

getConnection()

getBatchId(Connection, fileName)

processFile()

buildRobotInfo(Connection)

See sequence
diagram below for
more detai ls

unmarshal(Reader, validate)

LogToDB(Lq, Connect ion, batchId, robot Info)

One call per
XML log entry

Figure 237: Sequence diagram for off-line processing of log file

SQL Insert statement to insert log record into user stats database:
insert into request (
 request_id, session_id, context, request_type, download_format,
 complete_download_ind, ds_name, lang, referrer, bucket_id, batch_id,
 request_time, robot_id
)
values (
 request_seq.nextval, session_id, context, .., batch_id, request_time, robot_id
)

A robot (or crawler) is a simulated user often used by search engines to index web pages. With the
introduction of the CLP pages to AFF, more robots were able to index AFF result pages. To get an
accurate count of actual user requests, it was necessary to differentiate requests made by crawlers. IP
addresses and user agents were used to uniquely identify crawlers.

Date Last Printed: 9/26/06 Page 359 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.14.5.2.1. Sequence diagram – buildRobotInfo(..)
The following sequence is executed once per log file. It creates a Java hashtable of recognized robots to
AFF. The hashtable is then used as a lookup table to see which requests robots made based on the IP
address and user agent combination.

 : DBUt il : RobotInfo : Company

RobotInfo()

addCompany(id, minIp, maxIp, ua, name)

Company(name, minIp, maxIp)

addUserAgent(ua, id)

Figure 238: Sequence diagram for building robot profile hashtable

SQL query used to retrieve details for all robots recognized by AFF:
select robot_id, comp_name, user_agent, min_ip, max_ip
from robots_profile

5.6.14.6. Data Model
The SERVER_ACTIVITY table is not associated with the logging of user requests. It logs activity for the
server, such as when a clone is started, stopped, or restarted. These activities are entered in the log file
with ## as a prefix. A user request will always have an entry in the REQUEST table. Depending upon
the type of request, other tables are used to record certain attributes of the request. For example, when a
thematic map user request is logged, REQUEST_MAP is populated with the selected geo id, theme
name, service name, and display by code; all of which come from the XML log entry.

Date Last Printed: 9/26/06 Page 360 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Figure 239: Data Model for User Activity Logging subsystem

Date Last Printed: 9/26/06 Page 361 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.14.6.1. User Activity Reporting
The user stats database can be used to generate a number of different reports. Reports can be
generated by submitting queries directly to the database or using other software, such as Microsoft Excel.
The following is a sample query that can be used to generate the top 15 datasets requested by users for
a certain time period:
select rank, dataset, total
from (
 select req.ds_name as dataset, count(*) as total, RANK() over (order by count(*)
desc) as rank
 from aff_stats.request req
 where (to_char(req.request_time,'MM/DD/YY') > 'xx/xx/xx') and
 (to_char(req.request_time,'MM/DD/YY') < 'xx/xx/xx') and
 req.robot_id is null and req.ds_name is not null
 group by req.ds_name)
where rank <= 15

For other queries that can be used to generate reports, refer to the following document:

 I:\AFF\AFF Code Deployments\AFF Code Release Generic\02 AFF Design\Design - User stats query
library.doc

Date Last Printed: 9/26/06 Page 362 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.15. Load & Save Query

5.6.15.1. Functional Description
The load and save query subsystem allows users to save the parameters selected for a table or map as
an XML file on the users machine for retrieval at a later time.

The load and save query functions are available for the following AFF products:

• Detailed Tables

• Quick Tables

• Geographic Comparison Tables

• Custom Tables

• Data Profiles

• Multi-Year Profiles

• Ranking Tables

• Econ quick reports (Geography, Industry, Product)

• Thematic Maps

• Reference Maps

The load and save query functions are available from various places within AFF. Users can save table or
map queries directly from the result page. Users can also load previous queries they have saved on their
machine from the result pages. There is no requirement that the context of the current result page match
the context of the to-be uploaded file. For example, if a user is currently viewing a quick table (QT), the
user can use the load query function from the result page to load a thematic map query and be redirected
to the map result page. The load query function can also be accessed directly from the Data Sets page.

5.6.15.2. Design Approach
The save and load query functions rely heavily on the AFF defined context in web.xml as an init
parameter. The servlet determines the context of the request and invokes the appropriate method.

The following design issues were addressed in the implementation of the load and save query functions:

• By modifying the XML file, a user cannot gain access to unapproved data beyond what it can achieve
by modifying the URL directly.

• There is a limit on the file size being uploaded of 1MB. This prevents a user from submitting an
abnormally large query to slow down response time.

• The file being uploaded in the load query function is a text file, not an executable. Therefore, viruses
or other malicious file types do not pose risks.

• If the file does not comply with a predefined DTD (XML structure) or the selections do not pass
parameter validation, the user is redirected to the error page.

Advantage of load and save query over bookmarking

The load and save query functions give the distinct advantage of being to able to save all parameters
selected by a user. In bookmarking a URL, there is a limit to the number of characters that can exist in the
URL. If a user were to select a large number of geographies, the bookmarking code truncates the URL to
only those geographies currently displayed on the screen. With save query, the user has the ability to
save all geographies and tables selected, without losing any selections because of size limits.

Date Last Printed: 9/26/06 Page 363 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Ability to configure function availability

The load and save query functions are configurable so that they can be turned on or off without having to
issue a code release. The functions, however, cannot be disabled for thematic and reference maps.

In /jsp/bannerImageBeanDecl.jsp, the functions can be turned on or off by setting the appropriate
flags. The load query function is enabled if at least one context has the save query function enabled.

5.6.15.3. Named Servlets

5.6.15.3.1. Save Query
All named servlets for the save query function use the same controller,
gov.census.aff.controller.table.SavedQueryServlet.

The context included in the named servlet definition drives the navigation and results for the save query
function.

URI (Named Servlet) Context Session Manager
CTSavedQuery.xql ct CTSessionManager

ADPSavedQuery.xql adp ADPSessionManager

MYPSavedQuery.xql myp MYPSessionManager

GRTSavedQuery.xql grt GRTSessionManager

DTSavedQuery.xql dt DTSessionManager

RMSavedQuery.xql rm -

TMSavedQuery.xql tm -

GCTSavedQuery.xql gct GCTSessionManager

GQRSavedQuery.xql gqr GQRSessionManager

IBQSavedQuery.xql ibq IBQSessionManager

IQRSavedQuery.xql iqr IQRSessionManager

PQRSavedQuery.xql pqr PQRSessionManager

PIQRSavedQuery.xql piqr IQRSessionManager

QTSavedQuery.xql qt QTSessionManager

Table 62: Named servlets for Save Query function

5.6.15.3.2. Load Query
URI (Named Servlet) Locale

QueryTableEn en
QueryTableEs es

Table 63: Named servlets for Load Query function

5.6.15.4. Class Diagrams
The following class diagrams show a high-level relationship amongst the classes for the load and save
query functions.

Date Last Printed: 9/26/06 Page 364 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.15.4.1. Load Query
If the method of the incoming HTTPRequest is “POST”, then the servlet knows the request is a load query
request and calls the appropriate method, depending on the context.

SavedQueryServlet

- queryContent()
- redirectADP()
- redirectCT()
- redirectDT()
- redirectGCT()
- redirectGCTGeneric()
- redirectGQR()
- redirectGRT()
- redirectIBQ()
- redirectIQR()
- redirectMYP()
- redirectPIQR()
- redirectPQR()
- redirectQT()
- redirectQTGeneric()

(f ro m tabl e)

AFFServlet
(f rom co mmon)

<<Http_Servlet>>

PartInputStream
(from common)

MultipartParser

+ MultipartParser()
+ readNextPart()

(from common)
Part

+ getInputStream()
+ isFile()

(from common)

UserSession
(from session)

<<instantiates>>

<<instantiates>>

<<instantiates>>

<<instantiates>>

Figure 240: Class Diagram for Load Query

Generic versions of some methods were created in order to reuse code for AFF products that behaved
similarly. For example, ACS ADPs and MYPs behave similarly to Decennial QTs. Therefore, the
redirectQTGeneric() method is invoked since most of the URL and session parameters are the
same.

Date Last Printed: 9/26/06 Page 365 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.15.4.2. Save Query
The save query function is context driven. Depending on the context of the current result, the appropriate
method is invoked.

SavedQueryServlet

- saveQueryXml()
- sendADP()
- sendCT()
- sendDT()
- sendGCT()
- sendGQR()
- sendGRT()
- sendIBQ()
- sendIQR()
- sendMYP()
- sendPIQR()
- sendPQR()
- sendQT()
- sendRM()
- sendTM()

(from table)

AFFServlet
(f rom common)

<<Http_Servlet>>

AFFParameters
(from common)

SavedQueryImpl

+ marshal()

(from savedQuery)

<<instantiates>>

<<instantiates>>

Figure 241: Class Diagram for Save Query

Date Last Printed: 9/26/06 Page 366 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.15.5. Sequence Diagrams
The following sequence diagrams highlight the main interactions among classes for the load and save
query functions.

5.6.15.5.1. Load Query
When the HTTPRequest method is equal to “POST”, the request is for the load query function. Before
constructing the URL to be forwarded to, the servlet does some error checking on the contents of the file.
The code checks the XML file for content, syntax, and length. If the file does not conform to an AFF
acceptable XML structure, then an exception is thrown and the user is forwarded to an error page.

Infrastructure :
SavedQueryServlet

 :
MultipartParser

 : Part :
SavedQueryImpl

processRequest(req, resp)

queryContent(req, resp)

MultipartParser(HttpServletRequest)

readNextPart()

Part

getInputStream()

PartInputStream

unmarshal(PartInputStream)

redirectQT()

Method depends on
context of request

Redirects user
to correct URL

Checks file
for content
and st ructure

Figure 242: Sequence diagram for Load Query

Date Last Printed: 9/26/06 Page 367 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.15.5.2. Save Query
If the method of the HTTPRequest is not equal to “POST”, then the request is forwarded to the save
query function.

Infrastructure :
SavedQueryServlet

 :
SavedQueryImpl

processRequest(req, resp)

saveQueryXml(req, resp)

sendQT(AFFParameters, resp)

create()

sendQTGeneric(SavedQueryImpl,AFFParameters,resp)

populate()

marshal(HTTPServletResponse.getWriter())

setType(context)
Method depends on
context of request

Figure 243: Sequence diagram for Save Query

5.6.15.6. Data Model
The load and save query functions do not directly access the MDR. In the case of load query, the
appropriate parameters are retrieved from the uploaded XML file and a URL is constructed which the user
is forwarded to. In the case of save query, the XML file is generated based on user selections stored in
the URL parameters as well as the UserSession object.

5.6.16. Congressional Web Site (CWS)

5.6.16.1. Functional Description
The purpose of the Congressional website (CWS) is to provide a resource for congressional staff to easily
access Census data. The website was created to reflect unique needs of Congressional offices.

Similar to SAFF, CWS provides a simpler interface to navigating data, but providing a different set of
geographies than what is available on SAFF. The user can select the navigation method of either
geography or subject (left-hand navigation).

Because of this commonality, the design of CWS and SAFF are very similar. To avoid repetition of design
concepts, this chapter details design elements that are unique to CWS.

Date Last Printed: 9/26/06 Page 368 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.16.1.1. Navigation
There are two main ways in which a user can navigate pages within CWS:

• Geographic Navigation

• Subject Navigation (Left-hand navigation)

5.6.16.1.1.1. Geography Navigation
The Select Geography function is the primary navigation for CWS. The geographic types and specific
geographies offered for selection are limited to those that will lead to a result. The Select Geography
function offers two methods of selection for the purpose of locating census tables and or maps:

• List: “Select a State, District, or County”

• Address Search: “Locate a District”

Address Search is both by street address and zip code, and zip code only.

The Congressional Web Site supports a limited set of summary levels: US, State, Congressional District
(109th) and County.

5.6.16.1.1.2. Subject Navigation
The subject navigation provides users of CWS with a three sets of categories of information:
Demographic Links, Economic Links and Other Links.

If a user navigates the site using the sub-navigation (left-hand navigation), the system returns data for the
US-level by default. The user must use the “Select Geography” functionality to obtain data at the State,
Congressional District, or County levels or perform an address search. Once a geography has been
selected in this method and the user navigates different subjects, the selected geography is maintained in
the session.

Similar to SAFF, for the Fact Sheet, People and Housing subjects, the most recent ACS data is also
made available via a tab. If there is no ACS data for the selected geography, there is a note presented
instead of the ACS tab.

5.6.16.1.2. Fact Sheet
Fact sheets are shared between SAFF and CWS. The only difference is that CWS has a limited number
of summary levels that are accessible through the CWS interface.

5.6.16.1.3. People, Housing and Economic Links
As in SAFF, these pages eliminates the complex interaction with AFF by providing “canned” links to most
pertinent facts about common geographies that are relevant to congressional staff.

When a user selects to view these other products via one of these deep links in CWS, they are redirect to
AFF result pages as in SAFF. There no breadcrumb options that a user of AFF would normally see when
viewing a result page.

These pages are “static” jsps that are organized in a similar way as the SAFF jsps. More detailed
information on the jsp organization is available in the section below Organization of CWS JSPs.

5.6.16.2. Place of component in functional view
CWS pages in a similar way as SAFF implicitly select a dataset, a default geography and table for the
user depending on whether the user is on a Decennial tab, ACS tab or on the Business and Government
page. The only choice a user has is to change the selected geography.

Date Last Printed: 9/26/06 Page 369 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.16.3. Design Approach

5.6.16.3.1. CWS Metadata for fact sheets
As stated earlier, the fact sheets are shared between SAFF and CWS with the only difference in the
geographic coverage. SAFF and CWS support the same tree, t he SAFF and CWS application logic
only presents the supported summary levels to the user.

5.6.16.3.2. CWS Geo Bridging
As in the case with SAFF, there is geo bridging required since census boundaries of a geographic entity
can change from year to year. The bridging functionality that is implemented for SAFF is reused by CWS.
The CWS classes that extend SAFFSearchContext and AcsSaffSerachContext are
CwsSearchContext and AcsCwsSearchContext. The only method that is overwritten in this is
getGeoIdOfInterest() method. Since in CWS the only geographies of interest are State, County
and Congressional Districts, this method only returns those summary level types, where as in SAFF there
is a large set of summary levels that are returned. The same design principals that SAFF uses for this
bridging functionality are also applicable to CWS.

5.6.16.3.3. Organization of CWS JSPs
CWS jsp organization is identical to SAFF. The name convention and directory structure follow the one
adopted by SAFF.

5.6.16.3.4. Feedback system
The user feedback system that is used for AFF is reused in CWS. The only difference is that the servlet
configuration uses a different email address to send the user’s feed to the Congressional Affairs Office
(CAO). The feedback data is written the same database and table the AFF feedback.

5.6.16.4. URL (named servlets) to Java servlet class mapping
The context used for most of the servlets is ‘cws’ with the exception of for table servlets such as
CWSQTable used to render quick tables. These table servlets use the normal context they use in AFF
such a qt for CWSQTable. The jsp page defined for these table servlets differs from AFF, thus allowing
the rendering of the tables using the CWS branding.

As in SAFF, the CWS servlets that have ACS data available also have unique named servlets defined.
The tables below contain additional information about all the named servlets used with CWS.

Most CWS named servlets use SAFF-like implementation servlet classes and JSPs:

SubContext URI
(named servlet) [1]

Implementation
Servlet Class [2]

Content well JSP name [3,4,5]

fph CWSFacts CwsFacts <pgm>/fact_sheet_000.jsp
fph CWSPeople CWSSelect <pgm>/people_<gsl-code>.jsp
fph CWSHousing CWSSelect <pgm>/housing_<gsl-code>.jsp
fph CWSBusiness CWSSelect ecn/bus_ind_<gsl-code>.jsp

fph CWSTrade CWSSelect dec/trade_<gsl-code>.jsp
fph CWSGovernment CWSSelect ecn/gov_<gsl-code>.jsp
fph CWSReferenceShelf CWSSelect dec/refshelf.jsp

[1] All URIs are prefix by /servlet/ unless otherwise noted.

[2] All implementation servlet classes are in the gov.census.cws.controller.navigation package.

[3] All content well JSPs are in the /jsp/cws/content/ directory (prefix the name shown by this directory path).

[4] <pgm> is the program name or abbreviation, one of acs, dec, or ecn.

[5] <gsl-code> is the geography summary level, one of: 000, 010, 040, 050, or 500.

Date Last Printed: 9/26/06 Page 370 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Table 64: Named servlets using gov.census.saff.controller.navigation.CwsSearchContext

The ACS data named servlets re-use the SAFF implementation servlet classes and JSPs:

SubContext URI
(named servlet) [1]

Implementation
Servlet Class [2]

Content well JSP name [3,4,5]

fph ACSCWSFacts SaffFacts <pgm>/fact_sheet_000.jsp
fph ACSCWSPeople SaffSelect <pgm>/people_<gsl-code>.jsp
fph ACSCWSHousing SaffSelect <pgm>/housing_<gsl-code>.jsp

[1] All URIs are prefix by /servlet/ unless otherwise noted.

[2] All implementation servlet classes are in the gov.census.saff.controller.navigation package.

[3] All content well JSPs are in the /jsp/saff/content/ directory (prefix the name shown by this directory path).

[4] <pgm> is the program name or abbreviation, one of acs, dec, or ecn.

[5] <gsl-code> is the geography summary level, one of: 000, 010, 040, 050, or 500.
Table 65:Named servlets using gov.census.saff.controller.navigation.AcsCwsSearchContext

The CWS table results named servlets use CWS-specific table result implementation servlet classes and
JSPs:

Context URI
(named servlet) [1]

Implementation
Class Name [2]

Content well JSP name

dt CWSDTable TableServlet /jsp/cws/CWSTable.jsp
qt CWSQTable TableServlet /jsp/cws/CWSTable.jsp

gct CWSGCTable TableServlet /jsp/cws/CWSTable.jsp
adp CWSADPTable TableServlet /jsp/cws/CWSTable.jsp
myp CWSMYPTable TableServlet /jsp/cws/CWSTable.jsp

grt CWSGRTable TableServlet /jsp/cws/CWSTable.jsp
[1] All URIs are prefix by /servlet/ unless otherwise noted.

[2] All implementation servlet classes are in the gov.census.cws.controller.result package.
Table 66: Named servlets used to render table results.

The CWS thematic map named servlets use the standard AFF thematic map implementation servlet
classes and JSPs:

Context URI (named servlet) [1] Implementation Class Name [2] Content well JSP name [3]
cws CWSThematicMapFramesetServlet ThematicMapFramesetServlet thematicmap.jsp

cws CWSThematicMapBoundariesServlet ThematicBoundriesServlet thematicmapboundaries.jsp

cws CWSThematicMapTitleServlet ThematicMapTitleServlet thematicmaptitle.jsp

cws CWSThematicMapFeaturesServlet ThematicMapFeaturesServlet thematicmapfeatures.jsp

cws CWSThematicMapClassesServlet ThematicMapClassServlet thematicmapclasses.jsp

[1] All URIs are prefix by /servlet/ unless otherwise noted.

[2] All implementation servlet classes are in the gov.census.aff.controller.map package.

[3] All content well JSPs are in the /tm/ directory (prefix the name shown by this directory path).
Table 67: Named servlets for CWS thematic maps.

5.6.16.5. Class diagram
Please refer to the SAFF class diagram in section 5.6.1.5 for details.

Date Last Printed: 9/26/06 Page 371 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.16.6. Sequence diagram
Please refer to the SAFF sequence diagrams in section 5.6.1.6 for details.

5.6.16.7. Data model
CWS does not have any special data structures in the MDR. The CWS application reuses the AFF data
MDR elements that have been defined for table and thematic map creation.

5.6.17. Industry Selection (Econ)

5.6.17.1. Functional Description
Data for Economic Censuses and Surveys are summarized on both geographic areas (as is for
Demographic data) and by an industry classification. There are a number of coding schemes for the
various economic statistics produced. The primary classification is the North American Industry
Classification System (NAICS). Other codes include Products and Services, Materials and Fuels
Consumed and the legacy Standard Industrial Classification (SIC) that was replaced by NAICS in 1997.

5.6.17.2. Design Approach
All industry codes are organized in a hierarchy of ‘code-levels’. The topmost level is usually the two-digit
sector code, for codes that follow the NAICS model. The data is summarized at each level and is made
available in one or more datasets. Codes like the Material and Fuels Consumed do not define such a
hierarchy however they are stored and presented using the same infrastructure as a simple list.

First, the top-level codes are presented. When a specific code is selected, if the hierarchy defines at least
three levels, an intermediate selection is required to further narrow the codes available for selection. This
level is generally referred to as subsectors. The last step is to return all available industry codes for
selection by the user.

Optionally, a user can perform a search against all of the codes. This will return all of the matched codes
in any sector under which the code is defined.

The selection of industry codes is always data-driven, in that a code cannot be selected unless it is
associated with actual data rows. This is data warehouse maintained metadata in the table
IB_TREE_CONTENT that associates every industry code to the dataset containing data for that code.
No industry can be selected unless a row exists in this table.

Figure 244: Industry selection navigation

5.6.17.3. Named Servlets
The named servlets for the detailed statistics report industry selection are:

Context URI (Named Servlet) [1] Implementation Servlet Class [2] JSP [3]

FDS SelectIndustryProductServlet SelectIndustryProductServlet SelectIndustryProduct.jsp

IBQ IBQSelectIndustryServlet IBQSelectIndustryServlet IBQSelectIndustry.jsp

[1] All URIs are prefix by /servlet/ unless otherwise noted.

[2] All implementation servlet classes are in the gov.census.cws.controller.econ.finddatasets package.

Date Last Printed: 9/26/06 Page 372 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

[3] All JSPs are in the /jsp/ directory (prefix the name shown by this directory path).
Table 68: Named Servlets for Detailed Statistics Industry Selection

The named servlets for quick reports industry selection are:
Context URI (Named Servlet) [1] Implementation Servlet Class [2] JSP [3]

IQR IQRSelectIndustryServlet IQRSelectIndustryServlet IQRSelectIndustry.jsp

PQR PQRSelectIndustryServlet IQRSelectIndustryServlet IQRSelectIndustry.jsp

PIQR PIQRSelectIndustryServlet IQRSelectIndustryServlet IQRSelectIndustry.jsp

[1] All URIs are prefix by /servlet/ unless otherwise noted.

[2] All implementation servlet classes are in the gov.census.cws.controller.econ.iqr package.

[3] All JSPs are in the /jsp/econ directory (prefix the name shown by this directory path).
Table 69: Named Servlets for Quick Reports Industry Selection

5.6.17.4. Class Diagrams

5.6.17.4.1. Industry Codes

Figure 245: Industry Codes Class Diagram

All industry codes are represented as an IndustryCode object. The collection class IndustryCodes
holds a reference to all codes selected by the user and will be used to construct the SQL statement.

Date Last Printed: 9/26/06 Page 373 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.17.4.2. Industry Types

Figure 246: Industry Types Class Diagram

Every Economic dataset classifies data under one or more industry code systems. The IndustryType
specifies information for a classification system, the code levels which data have been summarized and
the data warehouse column name (getRefDeName) which contains the codes.

The following SQL query is used to return all available industry types for a given dataset and the code
levels to which the data is summarized. The Data Model shows the relations used throughout the
industry selection process.

Date Last Printed: 9/26/06 Page 374 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select it.ib_type, it.ibt_name, it.disp_label, it.dssp_name, it.iqr_ind, it.pqr_ind,
 ir.ref_de_name, ir.code_level,
 decode(it.ib_type,itn.ib_type,null,itn.ib_type) alt_ib_type,
 decode(sum(decode(itc.avail_code,'Y',1,0)),0,'N','Y') availind,
 decode(count(irs.ecn_sector_code),0,'N','Y') use_sector_ind
 from ib_tree_content itc, ib_treenode itn, ib_tree it, ib_ref ir, ib_ref_sector irs
 where itc.ds_name=? and itc.treenode_id=itn.treenode_id
 and ir.ib_code=itn.ib_code and ir.ib_type=itn.ib_type
 and ir.dssp_name=itn.dssp_name and itn.ibt_id=it.ibt_id
 and ir.ref_de_name is not null and irs.ib_code(+)=ir.ib_code
 and irs.ib_type(+)=ir.ib_type and irs.dssp_name(+)=ir.dssp_name
 group by it.ib_type, itn.ib_type, it.ibt_name, it.disp_label, it.dssp_name,
 it.iqr_ind, it.pqr_ind, ir.ref_de_name, ir.code_level
having decode(sum(decode(itc.avail_code,'Y',1,0)),0,'N','Y')='Y'

5.6.17.5. Sequence Diagrams

5.6.17.5.1. Industry Selection

Date Last Printed: 9/26/06 Page 375 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

infrastructure : SelectIndustryProductServlet : AFFParameters : UserSession : IndustrySearchService : EconSubSectorViewAdapter

processRequest(req, resp)

parseParameters(req)

validateSession(req)

UserSession(session)

AFFParameters(req, session)

getParameter(selectionType)

getSectors(affParameters)

getInstance()

processSearchByList(affParameters, viewAdapter)

when selectionType parameter is 'list'

getSelectedSectorNode(sectorList, selectedSector)

EconSubSectorViewAdapter()

getParameter(sector)

getSubSectors(affParameters)

getParameter(subsector)

getAllSectors(affParameters)

setSectorList(sectorList)

setSubSectorList(subsectorList)

setAllSectorList(newSectorList)

when selectionType parameter is 'keyword'

processSearchByKeyword(params, viewAdapter)

getParameter(keyword)

setSearchTerm(keyword)

executeIndustrySearch(affParameters)

setSearchResults(searchResults)

callPage(req, resp)

If a sector has been selected for which
subsectors exists, get subsector list.

If a subsector is selected or does not
exists, get list of all available codes.

Figure 247: Industry Selection Sequence Diagram

Date Last Printed: 9/26/06 Page 376 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The following SQL statement returns all sectors (top level) available for a dataset (or with the superset of
all datasets for a given survey). The parameter either match the dataset name (ds_name) or the dataset
superset name (dssp_name) respectively.
select p.disp_order, p.treenode_id, p.dssp_name, p.ib_code, p.ib_type, ir.ib_name,
 p.disp_label, ir.code_level, ir.broad_line_code, ibt.subsector_ind,
 es.ecn_sector_code, es.ecn_sector_title, ibt.disp_label ibt_disp_label,
 decode(count(distinct x.treenode_id),0,'N',1,'y','Y') subsect,
 decode(count(z.treenode_id),0,'N','Y') is_subsect,
 decode(sum(decode(q.avail_code,'Y',1,0)),0,'N','Y') avail_code
 from dataset d, ib_tree ibt, ib_ref ir, econ_sector es, ib_treenode p,
 ib_tree_content q, ib_treenode w, ib_tree_content x, ib_treenode y,
 ib_tree_content z
 where { d.dssp_name=? | d.ds_name=? } and ibt.ib_type=?
 and ibt.dssp_name=d.dssp_name and p.ibt_id=ibt.ibt_id
 and p.dssp_name=ibt.dssp_name and p.node_level=1
 and p.ib_type=ir.ib_type and p.dssp_name=ir.dssp_name
 and p.ib_code=ir.ib_code and es.ecn_dssp_name=p.ecn_dssp_name
 and es.ecn_sector_code=p.ecn_sector_code
 and q.treenode_id=p.treenode_id and q.ds_name=d.ds_name
 and w.parent_treenode_id(+)=p.treenode_id
 and x.treenode_id(+)=w.treenode_id
 and y.parent_treenode_id(+)=x.treenode_id
 and z.treenode_id(+)=y.treenode_id
group by p.disp_order, p.treenode_id, p.dssp_name, p.ib_code, p.ib_type, ir.ib_name,
 p.disp_label, ir.code_level, ir.broad_line_code, ibt.subsector_ind,
 es.ecn_sector_code, es.ecn_sector_title, ibt.disp_label
order by p.disp_order

When a sector has been selected, if more than one subsector exists under the select sector code, then
the following SQL will return these subsectors for the selected sector (treenode_id).
select p.ib_code, p.disp_label, p.treenode_id, p.ib_type
 from ib_treenode p
 where p.parent_treenode_id=? and exists (
 select 'OK' from ib_tree_content itc
 where itc.treenode_id=p.treenode_id
 and itc.ds_name=?)
order by p.disp_order

Finally, to return the full list of all available industry codes for a selected dataset or dataset superset, the
following heirarchical query is used to return all parent/child codes for the selected code.
select p.disp_order, p.treenode_id, p.dssp_name, p.ib_code, p.ib_type, p.disp_label
 from dataset d, ib_treenode p, ib_tree_content itc, ib_ref ir
 where { d.dssp_name=? | d.ds_name=? } and itc.ds_name=d.ds_name
 and itc.treenode_id=p.treenode_id and ir.dssp_name=p.dssp_name
 and ir.ib_code=p.ib_code and ir.ib_type=p.ib_type and itc.avail_code='Y'
 and p.treenode_id in
 (select treenode_id from ib_treenode start with treenode_id=?
 connect by prior treenode_id=parent_treenode_id)
UNION
select p.disp_order, p.treenode_id, p.dssp_name, p.ib_code, p.ib_type, p.disp_label
 from dataset d, ib_treenode p, ib_tree_content itc, ib_ref ir
 where [d.dssp_name=? | d.ds_name=?] and itc.ds_name=d.ds_name
 and itc.treenode_id=p.treenode_id and ir.dssp_name=p.dssp_name
 and ir.ib_code=p.ib_code and ir.ib_type=p.ib_type and itc.avail_code='Y'
 and p.treenode_id in
 (select treenode_id from ib_treenode start with treenode_id=?
 connect by treenode_id=prior parent_treenode_id)
order by 1, 2

The next SQL is used to perform a search against the available industry codes.

Date Last Printed: 9/26/06 Page 377 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

select es.ecn_sector_code, ir.dssp_name, ir.ib_code, ir.ib_type, ir.ib_name,
 itn.disp_label, itn.treenode_id, es.ecn_sector_title, ecn_sector_name,
 it.disp_label ibt_label, itc.avail_code,
 decode(irs.ecn_sector_code,null,'N','Y') use_sector
 from dataset d, ib_tree it, ib_treenode itn, ib_ref_sector irs, ib_tree_content itc,
 ib_ref ir, econ_sector es
where d.ds_name=? and it.dssp_name=d.dssp_name and it.ib_type=?
 and itn.ibt_id=it.ibt_id and itc.treenode_id=itn.treenode_id
 and itc.ds_name=d.ds_name and itc.avail_code='Y'
 and ir.ib_code=itn.ib_code and ir.ib_type=itn.ib_type
 and ir.dssp_name=itn.dssp_name
 and es.ecn_dssp_name=itn.ecn_dssp_name
 and es.ecn_sector_code=nvl(itn.ecn_sector_code,'00')
 and contains(ir.search_term,?)>0
 and irs.dssp_name(+)=itn.dssp_name
 and irs.ib_code(+)=itn.ib_code
 and irs.ib_type(+)=itn.ib_type
 and irs.ecn_sector_code(+)=itn.ecn_sector_code
order by ir.ib_type, es.ecn_sector_code, ir.ib_code

5.6.17.6. Data Model
The following tables are used by the application to determine what industry classification codes are used
by a dataset and the different levels of codes within that classification system. Economic survey
instances group data for one sector, including sector 00 which denote all sectors.

Figure 248: Data Model

Date Last Printed: 9/26/06 Page 378 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.18. Bookmarking

5.6.18.1. Functional Description

5.6.18.1.1. Redirection Behavior
When bookmarking behavior is enabled, an incoming request is converted to a bookmarkable URL and
the browser is redirected to this new URL. The redirect is achieved in a manner transparent to the user:
the browser’s history does not show an intermediate page for the redirect, and pressing the back button
on the browser takes the user to the original requesting page, not the redirect. In this manner, the final
result page is displayed with the bookmarkable URL shown in the browser’s Address field, and can be
bookmarked using the browser’s Add to Favorites (IE) or Add Bookmark (Netscape) feature.

5.6.18.2. Design Approach

5.6.18.2.1. URL Generation
The bookmarkable URL is generated using all the name/value pairs present in the AFFReqState
hashtable and adding them to the URL string. The name/value pairs in the AFFReqState object are
constructed from the values is the session and the incoming request. Each parameter on the URL is
marked with a special prefix (currently the ‘-‘ character). The length of the URL is then measured and if
within limits, the process is deemed successful.

5.6.18.2.2. URL Graceful Degradation
If the length of the URL, generated using the method described above, exceeds the URL length limit, as
specified in the SystemProperties.properties file using the max_url_length property, an
attempt is made to gracefully degrade the amount of data present in the URL. This degradation process is
specific to the application context, and the process involves removing as many name/value pairs as
possible from the RequestState hashtable. A common strategy is to minimize the number of geography
and table selections while still retaining as much data as is required to create the intended result page.
Once the selections have been minimized, the URL generation process is repeated.

5.6.18.2.3. Suppressing Session Expiration
Session expiration is suppressed for expired sessions ("user went to lunch and came back" scenario)
under the following circumstances:

• A saved bookmark or deep link is invoked (_bm=y, _bm=d, _bm=n).

• The user interacts with a page showing a non-degraded URL (_bm=y, _bm=n) e.g. by clicking
next/previous table/geography on an expired result page.

Session expiration will continue to occur under these circumstances:

• The user interacts with a page showing a degraded URL (_bm=d) e.g. by clicking next/previous
table/geography on an expired result page.

• The user clicks to a different area of the web site (Main, Data Sets, etc.)

Upon session expiration, if the user hits the back button a sufficient number of times to show any
bookmark/deep-link URL (_bm=y, _bm=n, _bm=d) in the address bar and hits enter, session expiration is
suppressed, all data in the URL is saved to session, and the result page displayed.

When session expiration is suppressed, only the data present in the URL is resurrected to session. All
other session data is lost and cannot be recovered.

5.6.18.2.4. AFFReqState Construction
For an incoming request, a AFFReqState object is built by loading all name-value pairs available in the
Http Session and the Http Request objects to a hashtable. The Session attribute names and
corresponding values are first added to the hashtable. The request parameters and values are added

Date Last Printed: 9/26/06 Page 379 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

next, such that any request parameter would overwrite a session attribute of the same name, if already
present in the hashtable. Any parameters in the request that already have the bookmark prefix (currently
the ‘-‘ character) are ignored and not added to the hashtable.

5.6.18.2.5. Flow Of Control

5.6.18.2.5.1. New Request Flow of Control
• In the doGet() or doPost() methods of AFFServlet, detect a new request is being invoked

because either

1. the request uses the POST method, or

2. the session does not have the PARSED=true attribute set, and the incoming URL does not have
the special bookmark prefix (currently the ‘-‘ character) on at least one parameter name.

• Convert incoming request to bookmarkable URL.

• Save request param names/values to session under BM context.

• For request params that are preceded with an ‘_’ indicating transient data, use an additional prefix
(currently using ‘tmp’) before saving to session.

• Add an attribute to the session PARSED=true to indicate the request is being redirected.

• Redirect browser to bookmarkable URL. If URL length not within limits, silently pass-thru to the
doGet() method.

• In the doGet() method, detect an incoming redirect/pass-thru using the PARSED=true attribute
present in the session.

• Transfer names/values in the session saved under the BM context to the application context.

• Remove the ‘tmp’ prefix for transient data before transferring to the application context.

• Remove the PARSED attribute from the session.

• Wrap the Http request in an AFFRequest object.

• Process request.

5.6.18.2.5.2. Bookmarked Request Flow of Control
• Detect a bookmark is being invoked because

1. the session does not have the PARSED=true attribute set, and

2. the incoming URL has the special bookmark prefix (currently the ‘-‘ character) on all parameter
names.

• Remove the ‘-‘ prefix before saving the request params and values to the session under the current
application context.

• Wrap the Http request in an AFFRequest object.

• Process request.

Date Last Printed: 9/26/06 Page 380 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

START
REQUEST

Global
Bookmarking

Servlet
Bookmarking

_bm=n param
presenttrue true

PROCESS
REQUEST

Is POST

Session
Marked

Request
Marked

false

false

false

SAVE

Load all session attributes and
request params to state table
Save request params to session
under BM context
Prefix temporary params (leading ‘_’)
with tmp
Mark session (attribute
“parsed=true”)

Build URL from
state table

URL Length
within limits

Degrade
Selections

URL Length
within limits

REDIRECT
REQUEST

true

false

true

Global
Bookmarking

Servlet
Bookmarkingtrue Session

Marked

Request
Marked

LOAD FROM REQUEST

Process only params with leading ‘-‘
Remove leading ‘-‘ from param name
Save these params/values to session
under request context

LOAD FROM SESSION

Process attributes from session
under BM context
Remove leading ‘tmp’ from attribute
name if present
Save attributes/values to session
under request context
Unmark session (remove “parsed”
attribute)

true true

false
false

true

false Ignore HttpRequest for
subsequent processing

truefalsefalse

true

true

false

false

false

Figure 249: Bookmarking Flow chart

Date Last Printed: 9/26/06 Page 381 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.18.2.6. Bookmarking Control

5.6.18.2.6.1. Global Bookmarking Flag
The SystemProperties.properties file has a flag bookmarking_enabled set to true by default.
This flag controls bookmarking behavior at the global level. If this flag is removed or set to any value other
than true, all bookmarking related redirects are disabled. However, if a previously saved bookmark is
invoked by a user, the URL will be decoded and processed appropriately.

5.6.18.2.6.2. Servlet Bookmarking Flag
A Servlet can set an init parameter MAKE_BOOKMARKABLE=true to enable bookmarking for the specific
named servlet. The absence of this parameter, or a value other than true will cause bookmarking to be
disabled for the servlet. However, if a previously saved bookmark for this servlet is invoked by a user, the
URL will be decoded and processed appropriately.

5.6.18.2.6.3. URL level bookmark parameter
A URL can include a parameter _bm=n to prevent a redirect. This control is meant to be used for deep-
linking to AFF by other areas of the application as well as external applications.

In summary, bookmarking behavior is enabled only if allowed by all of the above mentioned controls, i.e.
the global bookmarking flag is set to true, the servlet specific flag is set to true, and the incoming URL
does not disable bookmarking with the use of the _bm=n parameter.

5.6.18.2.7. HTTP Request Wrapper
The AFFRequest class serves as a wrapper for the HttpServletRequest. This capability is required
because of the need to support code in the application that directly interacts with the
HttpServletRequest object. If bookmarking is being used, the request parameters all have a BM
prefix (currently the ‘-‘ character) and so the application code fails to locate the relevant parameters and
their values. The AFFRequest object serves as a proxy to the real request. It intercepts the
getParameter type of methods and uses the BM prefix to get to the required parameter. This allows
compatibility to be maintained with all existing code in a transparent manner.

5.6.18.2.8. Graceful Degradation Support
The CT, DT, and QT application contexts support graceful degradation. This capability can be extended
by simply adding new classes for other application contexts. No change needs to be made to existing
code. The only requirement is the new class should extend AFFBookmarkURL, and use the application
context as a suffix to the base-class name: AFFBookmarkURL<application-context>

Application
Context Graceful Degradation Result

DT A URL that captures the tables and geographies visible on the current screen, and all
other tables and geographies are dropped from the selection. The number of tables
and geographies to retain is obtained from the DT_CHUNK_SIZE and
DT_GEO_CHUNK_SIZE properties.

CT A URL that captures the custom table cells and geographies visible on the current
screen, and all other cells and geographies are dropped from the selection. The
number of rows to retain is obtained from the TABLE_MAX_ROWS property. Custom
tables allow users the ability to sort and filter the results. If and sorting or filtering has
taken place, then no degradation occurs. The code check the present of any of the
following parameters in the session to determine if degradation can occur:
IUserSession.DATA_SORT_KEY0, IUserSession.DATA_SORT_KEY1,
IUserSession.DATA_SORT_KEY2 and IUserSession.DATA_FILTER_KEY.

Date Last Printed: 9/26/06 Page 382 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Application
Context Graceful Degradation Result

QT A URL that captures the tables for the geographies visible on the current screen, and
all other tables and geographies are dropped from the selection. The number of tables
to retain is obtained from the QT_CHUNK_SIZE property.

GQR, IBQ,
IQR and PQR

Only one table can be viewed at a time, as a result, degradation never occurs.

RM A URL that captures all the attributes of the map including boundaries, boundary
labels, features, feature labels, service name, selected geography, extent of the map
displayed etc. One exception to this is the user defined title which is not included as
part of the URL and as a result when the user invokes a bookmarked URL, the custom
title would be missing from the resulting map. The rationale behind the decision to
exclude title from URL is that titles can contain characters which have special meaning
in a URL e.g. space, characters ‘:’, ‘/’ etc. These characters are encoded to another
string, which is greater than one character, when the browser redirects the page to the
bookmarked URL. As an example, a single space character is converted to three char
long string, which reads like %20. Since the detection of this condition is not possible a
priori, it has the potential of increasing the length of the URL beyond the max limit.

TM The bookmarked URL contains all the attributes necessary to recreate the map, as
defined in the section above for reference maps. Besides, thematic maps also persist
information specific to thematic maps like the number of classes, class color and
classification method. As in reference maps, the user-defined title is excluded from
thematic maps as well when creating a bookmarkable URL.

5.6.18.2.9. Extensibility

Bookmarking support can be enabled for other servlets by simply adding the
MAKE_BOOKMARKABLE=true configuration parameter to the servlet’s deployment descriptor.

Once a servlet specifies itself as bookmarkable, all output generated by the servlet will be displayed with
a bookmarkable URL as long as a URL can be constructed within current length limits (2048). Graceful
degradation can be added on a per application context basis if not already available. See previous
section for guidelines to add graceful degradation support.

When extending bookmarking to other areas of the application, please ensure the session attributes
names, request parameter names and values are all using URL safe strings. Characters such as # and +
are known to cause problems and will result in a malformed URL and unexpected application behavior.

5.6.18.2.10. Limitations
The current implementation does not suffer from any major limitations, apart from the URL length limit,
which is an external limitation. The URL length is limited to 2048 characters, and is a function of the
amount of data saved to session and passed in the request. It is prudent to minimize session data as a
general design principle, and this will also help keep the URL length within manageable limits.

Specifying all relevant session and request information as a URL string forms a bookmarkable URL. Only
URL safe characters are allowed in the URL. Specifically the # and + characters cannot be used inside
session attribute names, request parameter names, or value.

Bookmarking currently supports only String parameter and attribute names. The value can be a
String or a user-defined object. If objects are being stored to session and are required to persist across
requests, there are two requirements before bookmarking can be used:

1. The user-defined object should provide a toString() method that marshals the object’s contents to
a string. The generated string should be URL friendly, i.e. it should not use characters that have a
special meaning on a URL such as ‘:’, ‘&’, ‘/’, etc.

Date Last Printed: 9/26/06 Page 383 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

2. When the request is being processed, the stringified object will be saved in the session as a value for
the corresponding attribute. The application code should be capable of detecting the string and
unmarshaling it to get the corresponding object.

5.6.18.3. Named Servlets
The following servlets have the book-marking parameter set to true (MAKE_BOOKMARKABLE=true):
DTTable, CTTable, QTTable, IBQTable, GQRTable, IQRTable, GCTTable, ADPTable, MYPTable,
STTable, IPTable, ReferenceMapFramesetServlet, ThematicMapFramesetServlet. As
described above, this init parameter allows the application to process the book-marking logic for the
specific servlet.

5.6.18.4. Class Diagram

AFFBookmarkURL

AFFBookmarkURL()
addParam()
create()
degradeSelections()
getLimit()
getProps()
init()
skipVals()
tryToURL()
+ processGet()
+ processPost()
+ restore()
+ sseRequired()
- bmSwitchDisabled()
- bmSwitchEnabled()
- getSession()
- getSession()
- isRequestMarked()
- isSessionMarked()
- loadLimit()
- loadRequest()
- loadSession()
- markSession()
- needNewSession()
- needsBookmarking()
- processReq()
- save()
- setMaxLength()
- setProps()
- toURL()
- unmarkSession()

(f ro m ut il)

AFFBookmarkURLiqr
(f rom ut il)

AFFBookmarkURLct
(f rom ut il)

AFFBookmarkURLdt
(from uti l)

AFFBookmarkURLgqr
(f rom ut il)

AFFBookmarkURLibq
(f rom ut il)

AFFBookmarkURLpqr
(f rom ut il)

AFFBookmarkURLqt
(f rom ut il)

AFFBookmarkURLrm
(from util)

AFFBookmarkURLtm
(from util)

AFFReqState
(from ut il)

HttpServletRequest
(from http)

<<Interface>>

-_req

AFFRequest
(from ut il)

_req

Figure 250: Bookmarking Class Diagram

Date Last Printed: 9/26/06 Page 384 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

5.6.18.5. Sequence Diagram

Infractructure : AFFServlet :
AFFBookmarkURL

 :
AFFBookmarkURLqt

 :
HttpServletResponse

doGet(req, resp)
processGet(req, resp, context, isServletBookmarkable, props)

processReq(req, resp, context, isServletBookmarkable, props, isPost)

needsBookmarking(req, isServletBookmarkable)

create(req, ctx)

AFFBookmarkURLqt(req, ctx)

save(props)

sendRedirect(s)

Figure 251: Sequence diagram for bookmarking.

The above sequence diagram depicts the object interaction that occurs for bookmarking functionality.
This scenario assumes the following conditions:

1. The request is for a servlet that has bookmarking enabled. The bookmarking parameter in the request
is not set to never, that is the parameter does not look like _bm=n.

2. The requested servlet is of context QT, which means the AFFBookmarkURLqt object is used to
process the request.

3. There is no request URL degradation required.

Date Last Printed: 9/26/06 Page 385 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

6. OPERATIONAL/PROCESS VIEW

This chapter describes the operational and process view of AFF architecture including the production
(PROD), internal review (IR), product assurance (PA), and development (DEV) environments.

See the DADS Operational Overview section in the DADS High Level Systems Architecture document for
the high-level operational view of AFF.

6.1. Execution Environments
The four major AFF execution environments are:

• Development (DEV)

• Product Assurance (PA)

• Internal Review (IR)

• Production (PROD)

6.1.1. Environment Relationships
The relationships between these execution environments are shown below in Figure 252:

Figure - Operational-Process View Environments 2
Version - 1.2 Date - 2005-06-02

DEV
Development
Environments

IR
Internal
Review

Environments

PROD
Production

Environment

PA
Product

Assurance
Environments Leg 1 Leg 2

Release Release Release

ER

Figure 252: Operational/process view environments

AFF is coded and debugged in the DEV environment, tested in the PA environment, reviewed in the IR
environment, and then released to the public in the PROD environment.

The individual developer workstation development environment is different and is described in section 8.
Implementation View.

6.1.2. Processes Within An Execution Environment
AFF is a collection of interacting processes, including:

• Client

• Internet

• Edge Server

• Busy Server

• Unavailable Server

• Web Server

• Application Server

• Mapping Server

• Session Database

Date Last Printed: 9/26/06 Page 386 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Spatial Databases

• Metadata Repository Databases

• Database Warehouse Databases

• LDAP Server

These processes are described below.

6.1.2.1. Client
The Client is a user agent that end-users use to interact with AFF over the Internet using HTTP
communications. The user agent provides both the graphical user interface and communications interface
to AFF.

AFF neither supplies clients to the end-users, nor control what clients end-users use to access AFF. The
design and implementation of AFF closely follows current web standards to ensure support for a wide
range of clients. These web standards include:

• HTML / XHTML

• Session Cookies

• JavaScript

• Cascading Style Sheets (CSS)

• Display resolution of 800 x 600 or higher.

• Adobe Acrobat Reader (for reading PDFs)

• ZIP file format for database downloads

Typically, the client is an Internet browser that runs on the end-user’s computer system. Examples include
Internet Explorer 5.5+, Safari, Netscape 6.1+, and Firefox.

To avoid issues with clients (and Internet accelerators) from caching navigational pages during the
selection process, AFF adds a unique timestamp parameter (_ts=…) to URLs associated with dynamic
content that are not result pages.

AFF developers, testers, and administrators also use special clients to test and monitor AFF. These
clients include:

• WinRunner & LoadRunner – performance test tools

• TOPAZ – third party monitoring tool

• AFFMON – internal monitoring tool

6.1.2.2. Internet
The Internet is the communications link between an end-user and AFF.

AFF shares its Internet connection with other BOC web sites and has no control over the Internet other
than sharing the BOC’s firewall.

6.1.2.3. Edge Server
The Edge Server accepts incoming client request messages from the Internet and forwards these
messages to the appropriate AFF server for processing. The Edge Server is used in production
environments to provide load-balancing and fail-over redirection services. The Edge Server is also used
in the production environments between the Application Server(s) and the Mapping Server(s) to balance
traffic among Mapping Servers.

Date Last Printed: 9/26/06 Page 387 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

For performance, the “sticky-bit” setting is used to redirect, if possible, all requests from the same source
IP address to the same leg for processing. This architecture decision forces several other architecture
and deployment decisions as some ISPs, notability AOL, use proxy servers and an AOL user may appear
to come from several different IP addresses in the course of a single session.

The Edge Server is implemented using the IBM Edge Server software.

6.1.2.4. Busy Server
The Busy Server handles incoming client request messages when the Edge Server determines that AFF
is overload and cannot handle the request.

The Busy Server is an IBM HTTP Server with a single static page with a “system busy” message.

6.1.2.5. Unavailable Server
The Unavailable Server handles incoming client request messages when the Edge Server determines
that AFF is unavailable.

The Unavailable Server is an IBM HTTP Server with a single static page with a “system unavailable”
message; this message is modified to notify users of the expected system return time for planned AFF
outages.

6.1.2.6. Web Server
The Web Server handles incoming client request messages when the Edge Server determines that AFF
is available. The Web Server handles requests for static content and forwards requests for dynamic
content to the Application Server. Static content includes:

• HTML

• CSS

• JavaScript

• PDF files

The Web Server is implemented using the IBM HTTP Server (IHS) version 1.3.28. IHS is IBM’s version of
the Apache HTTP Server Project’s web server version 1.3.

The IHS is a process-based Web server, where each process handles a user request (hit). The IHS has a
modular architecture that provides the ability to extend and customize the web server using plug-in
modules.

The following standard plug-in modules are used by AFF:

• access_module • alias_module • auth_module

• dbm_auth_module • mod_action • mod_app_server_http

• mod_asis • mod_autoindex • mod_cgi

• mod_dir • mod_env • mod_imap

• mod_include • mod_log_config • mod_mime

• mod_negotiation • mod_userdir • rewrite_module

• setenvif_module • unique_id_module

For example, the mod_negotiation module provides IHS configuration of content selection
(negotiation) by encoding (Content-Encoding), language (Content-Language), and media type (Content-
Type).

In production, the IHS runs as user nobody and group nobody.

Date Last Printed: 9/26/06 Page 388 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

6.1.2.7. Application Server
The Application Server handles incoming client request messages for dynamic content using Java-
based servlets. The Application Server is a server with a Java engine running a collection of Java-based
servlets known as the AFF Java Application.

The Application Server uses Metadata Repositories (MDRs) for user navigation and uses the metadata in
the MDRs with the detailed data in the Data Warehouse (DW) for creating result products such as tables
and maps. The Application Server creates and sends requests to the Mapping Server to handle spatial
processing including geo-coding and map image creation.

The Application Server is implemented using IBM’s WebSphere version 5.1.1 and includes the
WebSphere Workload Manager to monitor and distribute processing among multiple clones within a
Application Server instance. An IHS plug-in is used for connections and load balancing between IHS and
a WebSphere Application Server.

WebSphere uses a multithreaded architecture; each user request is handled by a thread. Currently there
are 40 user threads per clone, with 10 clones per leg.

In addition to the worker threads to handle user requests, and the threads used by WebSphere, the AFF
Java Application implements the following utility threads for monitoring and control:

• aff.controller.advisor.NDAdvisor

• aff.util.SystemMemoryUtil

• aff.util.Timer

• used for the AccessKeyRegistry

• used for the CatalogRegistry

• used for the PersistentFactoryRegistry

• used for the ThreadPoolManager

6.1.2.8. Session Database
The Session Database stores the context information associated with user sessions; this data store is
managed by the Application Server.

The Session Database is implemented using IBM’s DB2.

6.1.2.9. Metadata Repository Databases
The Metadata Repository Databases store the non-spatial data used by the Application Server to
handle navigation requests and to populate table and map requests. The two major metadata repository
(MDR) databases are:

• English-language Metadata Repository (EMDR)

• Spanish-language Metadata Repository (SMDR)

The Metadata Repository Databases are implemented using Oracle’s Oracle 9i Enterprise Edition.

6.1.2.10. Data Warehouse Databases
The Data Warehouse Databases store the non-spatial data used by the Application Server to populate
table and map requests and is implemented using Oracle’s Oracle 9i Enterprise Edition.

6.1.2.11. Spatial Databases
The Spatial Databases store the spatial data used by the Mapping Server to geo-code addresses and
create maps.

Date Last Printed: 9/26/06 Page 389 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The Spatial Databases are implemented using Oracle’s Oracle 9i Enterprise Edition.

6.1.2.12. Mapping Server
The Mapping Server handles requests from the Application Server for address geo-coding and map
image creation.

The mapping server consists of two major sub-components; ESRI’s ArcIMS Mapping Server for map
image creation and ESRI’s ArcSDE Advanced Spatial Data Servers to access and manage the Spatial
Databases.

Both ArcIMS and ArcSDE have multithreaded architectures and, for performance, multiple ArcIMS
instances are run in a Mapping Server.

6.1.2.13. LDAP Server
The LDAP Server handles requests for authentication.

The LDAP Server is implemented using IBM LDAP Server.

6.1.3. Subsystems
Several of the components are operationally grouped into two sub-systems:

• WebSphere Subsystem - includes a Web Server, an Application Server, and the Non-Spatial
Databases used by the Application Server.

• Mapping Subsystem - includes an ArcIMS Server, an ArcSDE Server, and the Spatial Database
used by the ArcIMS and ArcSDE Servers.

Within each environment, the WebSphere Subsystem and the Mapping Subsystem are independent of
each other.

6.1.4. Processes and Subsystem Relationships
The relationships and operational flows between the AFF processes and subsystems within an execution
environment are shown below in Figure 253:

Date Last Printed: 9/26/06 Page 390 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Mapping
Subsystem

WebSphere
Subsystem

Edge ServerBusy Server Unavailable Server

Application Server

Web Server

Edge Server

User

Session
Database DW

Spatial
Databases

Mapping Server

Figure - Operational-Process View 1
Version - 1.2 Date - 2006-06-02

Client

Component not present in all environments

Internet

EMDR/
SMDR

Figure 253: Basic operational process view

6.1.5. Production Environment
The production environment consists of two parallel systems, known as Leg 1 and Leg 2. Each leg
contains the bulk of the hardware, software, and data needed for AFF; the exceptions are the shared
common components necessary to distribute processing and manage user session data between the
legs.

The common components have independent hardware, software, and data backups that can be switched
into production quickly (“hot spares”) to ensure continued operation in the event of a failure. The common
components are:

• Edge Servers

• Busy Servers

• Unavailable Servers

• Session Database

Inside each leg, multiple instances of the AFF application (called clones) are running within WebSphere,
and there are multiple execution instances of the ArcIMS Server. These multiple instances:

• Increase reliability (additional redundancy within each leg)

• Increase processing capacity (parallel processing for simultaneous requests)

• Fully utilize the hardware

This design allows AFF to continue processing user requests when a leg, subsystem, or shared
component is unavailable due to failure or for scheduled maintenance. An unavailable leg, subsystem, or

Date Last Printed: 9/26/06 Page 391 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

shared component is normally invisible to end-users; only during peak activity periods does the reduced
processing power raise the possibility of lengthening response times or the redirection of some user
requests to a busy server.

An additional production leg, known as External Review (ER), is used to preview and test releases in the
production environment. The ER environment differs from Leg 1 and Leg 2 in that ER does not have it’s
own database; rather ER attaches to and uses the databases in either Leg 1 or Leg 2.

The operational flows are between the legs and the components are described below in Figure 254.

Leg 2Leg 1

WebSphere
Subsystem

Mapping SubsystemMapping Subsystem

WebSphere
Subsystem

Edge
Server

Busy
Server

Unavailable
Server

HTTP Server

WebSphere WebSphere

HTTP Server

G

H

I I

G

BD

F F

H

Edge
ServerJ J

KK

L CA

User

E L

Session
Database

Data
Warehouse

English
Metadata

Spanish
Metadata

Data
Warehouse

English
Metadata

Spanish
Metadata

Spatial
Database

Spatial
Database

ArcIMS

ArcSDE

ArcIMS

ArcSDE

Leg Component Shared Component
Figure 254: Production environment operational/process overview

Incoming user requests A are directed by the BOC firewall to the Edge Server. The Edge Server
distributes F (sprays) user requests across the legs to the an HTTP Server in a WebSphere Subsystem
for processing. If one leg is unavailable then the Edge Server redirects all traffic to the other leg. If both
legs are unresponsive then the Edge Server redirects B all traffic to the Unavailable Server that returns C
a “system not available” message to the user. If the volume of user requests exceeds the capacity of the
system then some user requests are redirected D (shed) to the Busy Server that returns E a “system
busy, please try again later” message to the user.

User requests F for documents are processed by the HTTP Server and returned L to the user;
documents include images, PDFs, and static HTML, CSS, and JavaScript files.

User requests F for named servlets are passed G to a WebSphere Application Server for processing by
AFF servlets. A common WebSphere session database is used by both legs to ensure continuation of a
user’s session in the event of a leg becoming unavailable. An AFF servlet processes the user request

Date Last Printed: 9/26/06 Page 392 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

using the information in the metadata repository and data warehouse then builds and returns the
response K back to the user via the HTTP Server L.

Requests requiring geospatial data (maps or search by address) are passed H to an Edge Server for
redirection I to the ArcIMS Servers in a Mapping Subsystem for processing. The ArcIMS Server
processes the geospatial request using the ArcSDE Server to retrieve spatial data from the spatial
database then builds and returns the response directly to WebSphere J. Geospatial request processing is
“expensive”; this design provides load balancing of geospatial requests among the ArcIMS Servers.

The distribution and passing of messages between the Edge Servers and the WebSphere and Mapping
Subsystems is handled by specialized API interfaces and libraries, known as “plug-ins”, and are provided
by the COTS vendors for WebSphere and ArcIMS.

6.1.5.1. Edge Server Request Distribution and Fail-Over Handling
The Edge Servers allow user requests to be satisfied by either leg and allow a Mapping Subsystem in a
leg to satisfy geospatial data requests from a WebSphere Subsystem in another leg as shown below in
Figure 255.

Leg 2Leg 1

Mapping
Subsystem

WebSphere
Subsystem

Edge
Server

Edge
Server

Mapping
Subsystem

WebSphere
Subsystem

Figure 255: Interactions between WebSphere and Mapping Subsystems

A failure in one leg causes the other leg to assume all processing as shown below in Figure 256.

Leg 2Leg 1

Mapping
Subsystem

WebSphere
Subsystem

Edge
Server

Edge
Server

WebSphere
Subsystem

Mapping
Subsystem

Figure 256: Interactions between WebSphere and Mapping Subsystems when a Leg is Unavailable

A WebSphere Subsystem failure in one leg still allows the Mapping Subsystem in the same leg to satisfy
geospatial requests from the WebSphere Subsystem in the other leg as shown below in Figure 257.

Date Last Printed: 9/26/06 Page 393 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Leg 2 Leg 1

Mapping
Subsystem

WebSphere
Subsystem

Edge
Server

Edge
Server

Mapping
Subsystem

WebSphere
Subsystem

Figure 257: Interactions between WebSphere and Mapping Subsystems when a Leg’s WebSphere Subsystem is Unavailable

Likewise, a Mapping Subsystem failure in one leg still allows the WebSphere Subsystem in the same leg
to use the Mapping Subsystem in the other leg as shown below in Figure 258.

Leg 2Leg 1

Mapping
Subsystem

WebSphere
Subsystem

Edge
Server

Edge
Server

WebSphere
Subsystem

Mapping
Subsystem

Figure 258: Interactions between WebSphere and Mapping Subsystems when a Leg’s Mapping Subsystem is Unavailable

The multiple leg approach, while flexible, creates several interesting deployment issues associated with
the Mapping Subsystem; see the Deployment View section for details.

This flexibility and capability is the key to maintaining maximum uptime for AFF while being able to
recycle AFF subsystems on a regular basis (nightly) and to install updates to the AFF application.

6.1.5.2. Using External Review to Deploy and Test a New Release
The External Review environment can be used to deploy, test, and preview a new AFF database without
a third set of production databases. By mapping both production legs to use the same database, one of
the production databases can be connected to ER for maintenance, as shown in Figure 259 below:

Date Last Printed: 9/26/06 Page 394 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Leg 2

Leg 1

Edge Server

ER

DB # 1

Leg 2

DB # 2
uses

Leg 1

Edge Server

ER

DB # 1

Leg 2

DB # 2
uses

Leg 1

Edge Server

ER

DB # 2 DB # 1
uses

Step 1: Before Upgrade

Step 2: Upgrade DB # 2 in ER and Test

Step 3: Upgrade DB # 1 in ER and Test

Leg 2Leg 1

Edge Server

ER

DB # 2
uses

Step 4: Done!

DB # 1

Figure 259: Upgrading using the ER environment

Before the upgrade, as shown in Step 1, each leg has its own database and ER connects to one of the
production databases.

To upgrade both production databases without downtime, as shown in Steps 2 through 4, the first step is
to connect both Leg 1 and Leg 2 to the same production database (Leg 1 in this case) and then connect
ER to what was the Leg 2 production database. Upgrade the former Leg 2 production database and test it
in ER. Reconnect Leg 2 to the new Leg 2 database and repeat this process with Leg 1 as shown in Step
3. Finally, reconnect Leg 1 to the new Leg 1 database as shown in Step 4.

To update the AFF application and the AFF database at the same time, a combination of this approach
and the capability outlined in the previous section, the ability to shutdown a leg at a time, can be used to
upgrade AFF with little or no downtime. There is a risk introduced in these scenarios due to the short-term
use of a single production database, but this risk is a reasonable trade-off with the ability to maintain
maximum uptime.

Date Last Printed: 9/26/06 Page 395 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

6.1.6. Internal Review Environment
The internal review environment is similar to one leg of the production system with the addition of an
LDAP Server needed for user authentication. The internal review environment does not have Edge
Servers, Busy Servers, or Unavailable Servers.

The operational flow between the components in the internal review environment is shown below in
Figure 260.

WebSphere
Subsystem

Mapping
Subsystem

HTTP Server

WebSphere

B

D E

F

GA

User

Session
Database

Data
Warehouse

English
Metadata

Spanish
Metadata

Spatial
Database

ArcIMS

ArcSDE

LDAP ServerC

Figure 260: Internal Review Environment

User requests are directed A to the HTTP Server. User requests for documents are processed directly by
the HTTP Server B and returned to the user G.

User requests for named servlets are passed B to WebSphere Application Server for processing by AFF
servlets. Authentication is performed using calls C to the LDAP Server. If authenticated then the AFF
servlet processes the user request using the information in the metadata repository and data warehouse
then builds and returns F the response back to the user via the HTTP Server G. If authentication fails
then an error message is returned G to the user.

Requests requiring geospatial data are passed D directly to an ArcIMS server. The ArcIMS server
processes the geospatial request using the ArcSDE server to retrieve spatial data from the spatial
database, then builds and returns the response directly to WebSphere E.

6.1.7. Product Assurance Environment
The product assurance environment is similar to the internal review environment with the exception of the
LDAP Server; the product assurance environment does not use the LDAP Server.

The operational flow between the components in the product assurance environment is identical to that of
the development environment shown below in Figure 261.

Date Last Printed: 9/26/06 Page 396 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

6.1.8. Development Environment
The development environment is similar to the product assurance environment.

The operational flow between the components in the development environment is shown below in Figure
261.

WebSphere
Subsystem

Mapping
Subsystem

HTTP Server

WebSphere

B

D E

F

GA

User

Session
Database

Data
Warehouse

English
Metadata

Spanish
Metadata

Spatial
Database

ArcIMS

ArcSDE

Figure 261: Development Environment

User requests are directed A to the HTTP Server. User requests for documents are processed directly by
the HTTP Server B and returned to the user G.

User requests for named servlets are passed B to WebSphere Application Server for processing by AFF
servlets. The AFF servlet processes the user request using the information in the metadata repository
and data warehouse, then builds and returns F the response back to the user via the HTTP Server G.

Requests requiring geospatial data are passed D directly to an ArcIMS server. The ArcIMS server
processes the geospatial request using the ArcSDE server to retrieve spatial data from the spatial
database then builds and returns the response directly to WebSphere E.

6.2. Startup / Shutdown
In general, the startup and shutdown sequences follow the processing stack; that is, the lower level
components (databases) must be started before the higher level components (servers).

AFF has three major types of startup/shutdown sequences in the production environment:

• System Startup / Shutdown

• Leg Startup / Shutdown

• Subsystem Startup / Shutdown

Date Last Printed: 9/26/06 Page 397 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

6.2.1. System Startup / Shutdown
A System Startup / Shutdown is used when the entire AFF system needs to be restarted; this only
occurs during regularly scheduled maintenance or when significant infrastructure changes are made. A
System shutdown causes AFF to become unavailable to end-users.

The usual order in which AFF processes are started and shutdown is shown below Figure 262.

Mapping Subsystem

Leg-Specific Components

WebSphere Subsystem

Common Shared
Components

Web Servers)

Busy Servers

Edge Servers+

Unavailable Servers+

ArcSDE Servers

S
ta

rt
up

 S
eq

ue
nc

e

S
hu

td
ow

n
S

eq
ue

nc
e

Application Servers

ArcIMS Servers

Oracle Databases

DB2 Databases

Figure - Startup and Shutdown
Version - 1.1 Date - 2005-06-09

Figure 262: System Startup / Shutdown Sequence

One common variation of a system shutdown is to leave an Edge Server and an Unavailable Server
running in order to notify end-users that attempt to access AFF that (a) AFF is not available and (b) the
date/time that AFF is scheduled to become available.

6.2.2. Leg Startup / Shutdown
A Leg Startup / Shutdown is used when only one leg of the AFF system needs to be restarted; this can
occur during regularly scheduled maintenance or when a problem occurs with the hardware, software, or
the data associated with the leg.

The usual order in which a leg’s processes are started and shutdown is shown below in Figure 263.

Date Last Printed: 9/26/06 Page 398 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

St
ar

tu
p

Se
qu

en
ce

Sh
ut

do
w

n
Se

qu
en

ce

Mapping
Subsystem

Leg-Specific
Components

WebSphere
Subsystem

Web Servers

ArcSDE Servers

Application Servers

ArcIMS Servers

Oracle Databases

Figure 263: Leg Startup / Shutdown Sequence

The Edge Servers, Busy Servers, and the Unavailable Servers are not shutdown and the Edge Servers
are configured to redirect all traffic to the other (working) leg.

6.2.3. Subsystem Startup / Shutdown
A Subsystem Startup / Shutdown is used when only the WebSphere Subsystem or the Mapping
Subsystem in one leg of the AFF system needs to be restarted; this can occur during regularly scheduled
maintenance or when a problem occurs with the software or the data associated with the subsystem. This
approach allows the other subsystem within the leg to be left running and used by the other leg; see
section 6.1.5.1 Edge Server Request Distribution and Fail-Over Handling for details.

6.3. Batch Processes
This section describes the regularly scheduled and batch processing tasks that are performed by or upon
AFF for housekeeping purposes. Except where noted, all internal monitoring processes are invoked via
cron or other automated scheduling tool.

6.3.1.1. Edge Server Custom Advisors (enD)
The custom advisors in the Edge Server run every 7 seconds to monitor basic AFF component availability
and performance within the production environment. There are two advisors, one for each major AFF
subsystem:

• WebSphere Subsystem

• Mapping Subsystem

6.3.1.2. AFF Monitor (AFFMON)
The custom client AFF Monitor (AFFMON) runs every 10 minutes to monitor the production environment
availability and performance from inside the BOC intranet. An alert is sent if availability or performance
falls below a predefined threshold.

6.3.1.3. TOPAZ
The third-party client TOPAZ runs multiple times per day from multiple cities and networks across the
United States to monitor the production environment availability and performance from outside the BOC
intranet.

Date Last Printed: 9/26/06 Page 399 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

6.3.1.4. Database Monitor
A database monitor performs a sanity check of each database every 10 minutes and sends an alert if the
sanity check fails.

6.3.1.5. Database Watchdog
A database watchdog batch process checks the status of each database every 5 minutes; the database
watchdog restarts a database if the database fails to respond to a simple database ping request.

6.3.1.6. Edge Server Log Management
Edge Server logs are captured and saved every 5 minutes. Production environment logs are permanently
archived; the internal review and development environment logs are discarded after several weeks.

6.3.1.7. WebSphere Subsystem Log Management
WebSphere Subsystem logs are generated when the components are rotated nightly and archived online
for several weeks. Production environment logs are permanently archived; the internal review and
development environment logs are discarded after several weeks.

6.3.1.8. Mapping Subsystem Log Management
Mapping Subsystem logs are generated when the components are rotated nightly and archived online for
several weeks. Production environment logs are permanently archived; the internal review and
development environment logs are discarded after several weeks.

6.3.1.9. User Activity Log Processing
User Activity Log processing occurs daily from flat files generated by the WebSphere clones. On a nightly
basis, the log files are rolled-over, renamed with the date, processed, and then moved to an archive
directory. The archived log files are processed nightly by a batch process that writes the log entries into
the user statistics database.

6.3.1.10. Map Cleanup
To manage the storage required for the map images and to keep the map cache table at a reasonable
size, maps are purged on a nightly basis. The general algorithm for deciding which map to keep is:

• Upon a new release of AFF, the maps created dynamically in response to user requests are allowed
to remain on the system for a predefined time-period. Each map has associated images on the file
system and the corresponding entries in the map cache table.

• After the time-period has elapsed, usually a couple of days, a snapshot of the map cache table is
captured and archived into another table.

• A daily batch process then compares the current map cache table with the archived map cache table;
all maps not found in the archived map cache table are removed from the system including the
images from the file system and the map cache table entries.

The map cleanup mechanism also has the capability to track maps usage and modify the cleanup
algorithm based upon usage statistics, but this capability is not currently used in AFF.

6.3.1.11. WebSphere Subsystem Reboots
The WebSphere Subsystem is recycled daily to avoid any long-term resource build-up issues.

6.3.1.12. Mapping Subsystem Reboots
The Mapping Subsystem is recycled daily to avoid any long-term resource build-up issues.

6.3.1.13. Server Hardware Reboots
The hardware and operating system are rebooted monthly to avoid any long-term resource build-up
issues.

Date Last Printed: 9/26/06 Page 400 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

6.4. Patching
The general procedure for patching AFF in the production environment depends upon the type of
changes associated with the patch (aka “hot fix”).

• Patches for operating systems or system components usually require the shutdown and restart of the
system or component. The current design of AFF allows this type of maintenance without downtime
as described in section 6.1.5 Production Environment.

• Patches for static content such as HTML, CSS and JavaScript files can be applied while AFF is
running by copying the content onto the IBM HTTP Server.

• Patches for the AFF application running within the Application Server, such a Java object or jar file, a
JSP file, or a configuration file, may require a restart of Application Server. The current design of AFF
allows this type of maintenance without downtime as described in section 6.1.5 Production
Environment.

Note that the AFF Central interface can be used to temporarily modify many AFF Java Application
configuration items immediately without a restart; for example, the geography selection limits
associated with each project type defined in the LimitCatalog.properties file. Occasionally, the
limits defined in this property file are adjusted in real-time using AFF Central without restarts to
resolve operational issues associated with heavy request volumes from batch users.

The AFF Central interface provides tools to view and edit the configuration items associated with:

• Caches

• Catalogs

• JDBC Database Connections

• Logging

• Memory Management

• Performance Monitor

• Sessions

• Threads Pools

6.4.1. The “message of the day” alert
The SAFF, CWS and AIAN main pages have a common “message of the day” used to display a highly
visible message to users about system outages or issues.

This message is stored in a JavaScript include file on the IBM HTTP Server in the JavaScript include file
/home/saff/usermessage.js as a JavaScript string and is usually modified using a text editor or by
using the administrative JSP /jsp/nodeploy/createUserMessage.jsp.

Current procedures specify that this message should be set to warn users of scheduled downtimes or
critical system, application, or data issues.

6.5. Monitoring
There are two major methods of monitoring AFF:

• Viewing reports of AFF over periods of time, and

• Automated instantaneous monitoring of AFF.

Date Last Printed: 9/26/06 Page 401 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

6.5.1. Reports
The AFF Central interface provides dashboard and detailed reports on system components and activity
over time, including:

• General System Availability as reported by TOPAZ

• ArcIMS Server Activity

• Busy Server Activity

• Edge Server Activity

• Session Database

• High Volume Batch Users

• Robot Visits

• User Feedbacks

6.5.2. Instantaneous Monitoring
The eND, AFFMON, TOPAZ, RedAlert, and other administrative batch process constantly monitor AFF
and send alerts to AFF administrators if AFF availability or performance falls below predefined thresholds.

Date Last Printed: 9/26/06 Page 402 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

7. DEPLOYMENT VIEW

This chapter describes the deployment view of AFF and shows the allocation of tasks (from the Process
View) to the physical nodes.

Note: These details change over time as the AFF infrastructure is enhanced and tuned.

7.1. Overview
AFF runs on multiprocessor AIX systems; each system is configured with multiple nodes. The allocation
of AFF components and databases, both custom and COTS, across these nodes are shown in the
following figure:

sp2n97

sp3n33

IBM WebSphere
AFF PA

sp3n17

Production

sp1n01

IBM WebSphere
AFF IR

sp2n129

IBM WebSphere
AFF ER

IBM HTTP Server

sp2n03

Figure - Physical Deployment View
Version - 1.2 Date - 2005-06-23

sp2n01

Edge Server
& Backup

IBM Edge Server
factfinder.census.gov

IBM Edge Server
Mapping

sp2n07
sp2n05

Busy Server
& Backup

IBM HTTP Server
Busy Page

sp2cw2

Unavailable Server

IBM HTTP Server
Unavailable Page

sp2n113

IBM HTTP Server

IBM WebSphere
AFF PROD

Session DB

ArcIMS

ArcSDE

Spatial DB

IBM HTTP Server

IBM WebSphere
AFF PROD

ArcIMS

ArcSDE

Spatial DB

sp2n81

MDR

User Statistics

Web/App/Map Server
Leg 1

Web/App/Map Server
Leg 2

DB Server
Leg 1

DB Server
Leg 2 / er1

IBM HTTP Server

IBM WebSphere
AFF IR

Session DB

Web/App Server
affreview1 / affreview2

sp1n17

sp1n33

Map/DB Server
IR

MAP/DB Server
IR

Spatial DB

ArcIMS

ArcSDE

ArcIMS

ArcSDE

Web/App Server
affpa1 / affpa2 / affpa3

IBM WebSphere
AFF PA

IBM WebSphere
AFF PA

sp3n01

ArcSDE

IBM HTTP Server

IBM WebSphere

Web/App/DB Server
affcentral

MDR

ArcIMS

Web/App/Map/DB
Server

affdev1 / affdev2

Internal Review Production Assurance / Development

Oracle

DW

MDR DW

MDR DW

DB2

Session DB
Session DB

MDR

User Statistics

DW

Session DB Session DB

MDR

User Statistics

DW

Spatial DB

IBM HTTP Server

DW

IBM WebSphere
AFF PA

IBM WebSphere
AFF DEV

IBM HTTP Server

PROD node IR node PA/DEV node

IBM LDAP Server

Figure 264: AFF Physical Deployment View

Date Last Printed: 9/26/06 Page 403 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The above figure does not include the non-AIX AFF developer workstation (DWS) environments that are
described later in this chapter.

The following tables expand upon Figure 264 above:

Custom COTS

En
vi

ro
nm

en
t

Server Node A
FF

 A
pp

.

Sp
at

ia
l D

B

En
gl

is
h

M
D

R

Sp
an

is
h

M
D

R

D
W

Se
ss

io
n

D
B

O
th

er

H
TT

P
Se

rv
er

W
eb

Sp
he

re

A
rc

IM
S

A
rc

SD
E

D
B

2

O
ra

cl
e

R
A

C

PROD Leg 1 Web/App sp2n113 Y Y Y Y Y Y Y Y Y

PROD Leg 2 Web/App sp2n129 Y Y Y Y Y Y Y Y Y

PROD Leg 1 Database sp2n81 Y Y Y Y Y

PROD Leg 2 Database &
External Review

sp2n97 Y Y Y Y User
Statistics
Database

 Y Y Y

IR Web/App sp1n01 Y Y Y Y Y

IR Database sp1n17 Y Y Y Y IBM LDAP
Server
User
Statistics
Database

 Y Y Y

IR Database sp1n33 Y Y Y Y Y Y

DEV/PA Web/App/Database sp3n01 Y Y Y Y Y Builds,
Oracle
Enterprise

Y Y Y Y

DEV/PA Web/App/Database sp3n17 Y Y Y Y Y Y Y Y

PA Web/App/Database sp3n33 Y Y Y Y Y Y Y Y

Table 70: AFF Task Deployments by Environment and Node

The following nodes are used in the production environment to manage traffic between the legs and to
handle traffic when AFF is busy or unavailable:

Server Node Custom Content IBM Edge Server IBM HTTP Server [8]

Edge sp2n01, sp2n03 Y

Busy sp2n05, sp2n07 AFF Busy Page Y

Unavailable sp2cw2 AFF Unavailable Page Y

Table 71: Edge, Busy and Unavailable Server Deployment by Node

As the low level details change over time, please see these documents for the latest information about
the AFF configuration:

• DADS High Level Systems Architecture

• AFF System Architecture

7.1.1. Number of Tasks
AFF runs multiple instances of certain tasks, or threads within a task instance, or both, in order to fully
utilize the hardware. The exact numbers vary over time as AFF is tuned to reflect current workloads, but

Date Last Printed: 9/26/06 Page 404 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

the following are representative values for the AFF production environment. The other AFF environments
may be configured differently.

• IBM HTP Server uses a minimum of 100 processes and a maximum of 600 processes.

• IBM WebSphere uses 40 worker threads.

• ArcIMS uses multiple instances.

7.1.2. Server and Database Connections
The connections between the web/app nodes/servers and databases vary over time as new releases are
developed, tested and released, but the standard configurations are:

Environment Instance Web/App Subsystem Server DB Server Mapping Subsystem Server

PROD Leg 1 sp2n113 sp2n81 sp2n113

PROD Leg 2 sp2n129 sp2n97 sp2n129

PROD ER er1 sp2n97 sp2n97 or 81 sp2n129

IR affreview1 sp1n01 sp1n17 or sp1n33 sp1n17

IR affreview2 sp1n01 sp1n17 or sp1n33 sps1n17

PA affpa1 sp3n33 sp3n17 or sp3n33 ArcIMS on sps3n17, ArcSDE on sp3n01

PA affpa2 sp3n33 sp3n17 or sp3n33 ArcIMS on sps3n17, ArcSDE on sp3n01

PA affpa3 sp3n33 sp3n17 or sp3n33 ArcIMS on sps3n17, ArcSDE on sp3n01

DEV affdev1 sp3n17 sp3n17 or sp3n33 ArcIMS on sps3n17, ArcSDE on sp3n01

DEV affdev2 sp3n17 sp3n17 or sp3n33 ArcIMS on sps3n17, ArcSDE on sp3n01

DWS local workstation sp3n17 or sp3n33 ArcIMS on sps3n17, ArcSDE on sp3n01

Table 72: Server and Database Connections

The current server and database connections for a specific deployment can be found on-line using the
About AFF button available from the AFF Central user interface (usually
http://node.dads.census.gov/jsp/nodeploy/aboutaff.jsp).

7.1.3. Naming Conventions
The following naming conventions are used for AFF nodes/servers and databases:

Name What Is It? Notes

spEnN Server Node

a2TsN Spatial DB

a2TmN English MDR

s2TmN Spanish MDR

a2TdN Production DW

a2TlN User Statistics DB

ressN Session DB

E is a single digit that describes the deployment environment:
1 = Internal Review (IR)
2 = Production (PROD)
3 = Development (DEV) / Product Assurance (PA)

N is the two-to-three digit number associated with the node.
T is a single character that describes the deployment environment:
d = Development (DEV) / Product Assurance (PA)
e = External (PROD)
i = Internal (IR)
t = Test (Alternate Development)

Table 73: Server and Database Naming Conventions

Date Last Printed: 9/26/06 Page 405 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

7.2. Development Environment
The AFF developer workstation (DWS) environment is used by AFF developers to code AFF is on
Window PCs.

The WebSphere Studio Application Developer (WSAD) application in the DWS is used for both code
development and code execution/debugging.

The WSAD acts as the IBM HTTP Server and IBM WebSphere Server in the DWS. An AFF application
executing in the DWS environment connects to and uses the DEV environment for all other resources,
including a mapping server and the databases.

The DWS hardware depends upon the AFF developer job role and are described in the following tables:

Hardware Component Architect Java Developer Content Developer Tester

CPU Speed 2+ GHz 2+ GHz 2+ GHz 1+ GHz

Memory 1 GB 1 GB 1 GB 256 MB

Monitor Resolution 1024x768 1024x768 1024x768 800x600

Disk 80 GB + 80 GB + 80 GB + 40 GB +

Operating System Win 2000 Win 2000 Win 2000 Win 2000

Table 74: AFF Developer Workstation Hardware by Job Role

TheDWS software depends upon the AFF developer job role and are described in the following tables:

Software Package Architect Java Developer Content Developer Tester

Adobe Acrobat Y Y Y -

Adobe Acrobat Reader Y Y Y Y

Browsers (IE 6 and NS 7.1) Y Y Y Y

ERWIN Y Y - -

IBM WebSphere Studio Application
Developer

Y Y Y -

InFocus - Y Y Y

JAWS - Y Y Y

Lotus Notes Y Y Y Y

Macromedia Dreamweaver MX - Y Y -

Microsoft Excel Y Y Y Y

Microsoft Visio Y Y Y -

Microsoft Word Y Y Y Y

Rational ClearCase Y Y Y -

Rational ClearQuest Y Y Y Y

Rational Rose Y Y - -

Quest Software Toad Y Y - -

XMLSpy Suite Y Y - -

NetManage ViewNow - Y Y -

Table 75: AFF Developer Workstation Software by Job Role

Date Last Printed: 9/26/06 Page 406 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

8. IMPLEMENTATION VIEW

The Implementation View describes the software development environment and how it is organized,
including the components and files used to assemble and release the physical system

8.1. Development Process
The development process follows the standard DADS process as shown below in Figure 265.

creates
baseline

user /
tester

opens / modifies /closes
defect / feature

source code
control system

&
defect / feature
tracking system

developer

defects / features
 report

change
control board

(CCB)

prioritizes work on
defects / features

fixes defect /
adds feature /

resolves
defect / feature

builder

builds
release

deploys
release

system
administrator

delivers release

AFF Instance /
Environment

finds defects /
determines new feature

works-on
defect / feature

validates
change

team lead

assigns
defects / features

to developers

1

2

3

4a

5

6

7a

8

10

11

12

13

rejects /
 return for clarification

4b

7b

9

Figure - AFF Implementation View
Version - 1.2 Date - 2005-07-06

Figure 265: Development process overview

When a User or tester finds 1 a problem (a defect) or determines the need for an enhancement (a
feature) in an instance of AFF, the user submits (opens) a defect or feature change request 2 in the
ClearQuest defect / feature tracking system. The Change Control Board (CCB) meets regularly to
review a report 3 of outstanding change requests; the CCB then either approves or rejects each change
request. A rejected change request is returned 4b to the change request’s originator to close 13 the
change request or to obtain clarification 2 about the change request. An accepted change request is
scheduled and assigned to a developer 5 by the Team Lead associated with the affected component.

A Developer uses ClearQuest to determine which change requests tasks (defects and features) they are
assigned. Java and Content Developers work on a task by extracting (checks-out) the source files 6
requiring changes for the task from the source code control system (ClearCase); this process associates
the changes made to these source files with the specified task. After a developer has completed and unit
tested the changes, the developer returns (checks-in) the modified source files into ClearCase 7a; this
process may be iterated until the work on the request is complete at which point the developer uses
ClearQuest to mark the change request as completed (resolved) 7b. Data Warehouse Developers
follow a same process as Java and Content Developers except that database changes are made instead

Date Last Printed: 9/26/06 Page 407 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

of checking in/out files. The Builder creates a baseline 8 of the source code that is the source code
associated with a previous baseline plus the source code changes associated with one or more change
requests. The source code associated with the baseline is used to build 9 an executable release of AFF.
After a smoke test to insure that the release is usable, the builder delivers 10 the release to a system
administrator who deploys 11 the release in one or more AFF environments or instances within an
environment.

After the new release is deployed, the change request’s originator is asked to validate 12 that AFF was
modified as requested. Based upon the results of testing, the user either accepts or rejects the
modifications using ClearQuest; the user accepts the change by closing 13 the change request, or rejects
the change and logs the issues found in the change request 2.

8.2. Developer Workstations
There are three major types of Developer Workstation (DWS) environments used in the AFF
development process:

• Any Workstation

• Developer Workstation

• Builder Workstation

These types of workstations are briefly described below.

8.2.1. Any Workstation
Any AFF team member can use any workstation to perform general management tasks:

• Use and test AFF.

• Create a new feature or defect record.

• Open, modify, assign, or postpone an existing record.

• Mark an existing record as duplicate of another record.

• Validate, reject or close an existing record.

Any workstation must have the following software installed:

• Adobe Acrobat – used to view certain documents in AFF.

• Lotus Notes – used to communicate between team members, and to receive messages from
ClearQuest.

• Microsoft Internet Explorer – used to access and test AFF.

• Microsoft Office – used to create and view certain documents in AFF.

• Netscape Browser – used to access and test AFF.

• The ClearQuest Client – used to access ClearQuest functionality.

• WinZip – used to access certain files downloaded from AFF.

8.2.2. Developer Workstation
An AFF developer uses a PC-based developer workstation to make changes to AFF:

• Work-on an assigned feature or defect.

• Resolve a worked-on feature or defect by delivering the changes to the integration stream.

A developer workstation is a superset of any workstation, and must have the following additional
software installed:

Date Last Printed: 9/26/06 Page 408 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Rational Rose – used in the design and creation of AFF and related documentation

• The ClearCase Client – used to access ClearCase functionality.

• Toad – used to perform and monitor database queries

• WebSphere Studio Application Developer (WSAD) – An Eclipse-based integrated development
environment (IDE) that also provides a local run-time environment for unit testing. WSAD is integrated
with the ClearCase and ClearQuest to ensure that source file modifications performed inside the
WSAD IDE are stored within ClearCase and tracked by ClearQuest.

Other software that is useful to developers during the coding and testing of AFF includes:

• Firefox Browser – Alternate browser with useful debugging features.

• Infocus – Section 508 test tool

• JAWS – Section 508 tool

• Macromedia Dreamweaver – Static content development tool

• XML Spy IDE – XML tool

The local run-time environment (LRTE) provided by WSAD allows developers to execute and debug
AFF locally. The LRTE connects, via JDBC, to the same databases used by the AIX DEV environment;
this avoids having to duplicate the DEV environment databases on the development workstations. The
following table shows the typical configuration parameters used in the LRTE:

Configuration Item Typical Setting

Advisor Data Source jdbc:oracle:thin:@dads3n33.dads.census.gov:1521:A2DD33

Application Data Source jdbc:oracle:thin:@dads1n17.dads.census.gov:1521:A2ID33

Data Warehouse (DW) jdbc:oracle:thin:@dads1n17.dads.census.gov:1521:A2ID33

English Advanced Search Data Source jdbc:oracle:thin:@dads3n01.dads.census.gov:1521:A2DM17

English Metadata Repository (MDR) jdbc:oracle:thin:@dads3n01.dads.census.gov:1521:A2DM17

Feedback Source jdbc:oracle:thin:@dads1n17.dads.census.gov:1521:A2ID33

Geography Data Source jdbc:oracle:thin:@dads3n01.dads.census.gov:1521:A2DS01

IMS Host Name : Port dads3n17.dads.census.gov:5300

Log Data Source Connection bc:oracle:thin:@dads1n17.dads.census.gov:1521:A2IL17

Map Image Write Directory /develop/pii_write

SDE Host Name dads3n01.dads.census.gov

SDE Instance Name sd3_a2ds

Server Name : Port localhost:8080

Spanish Advanced Search Data Source jdbc:oracle:thin:@dads3n17.dads.census.gov:1521:S2DM17

Spanish Metadata Repository (MDR) jdbc:oracle:thin:@dads3n17.dads.census.gov:1521:S2DM17

Table 76: Typical LRTE configuration settings

The hostname localhost and port 8080 are typically used to access the LRTE; developers can view each
other’s LRTEs by specifying a specific’s workstation’s hostname instead of localhost in the URL.

The actual settings for a LRTE is available via the About AFF link available for each environment on AFF
Central. The URL is http://hostname:8080/jsp/nodeploy/aboutaff.jsp.

Date Last Printed: 9/26/06 Page 409 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

8.2.3. Builder Workstation
An AFF builder uses a builder workstation to:

• Create a baseline based upon one or more delivered features and defects.

• Access an AIX-based build environment to extract and build an AFF release from a baseline.

A builder workstation is a superset of a developer workstation with the addition of:

• ViewNow – The software used to access the AIX-based build environment.

• The privileges (IDs, passwords, and other permissions) necessary to create baselines and perform
other administrative tasks in ClearCase.

• The privileges (IDs, passwords, and other permissions) necessary to access the Build and Execution
Environments.

The build environment is used by builders to create (build) an executable release of AFF from the source
code stored in ClearCase. In addition to the standard AFF AIX-based environment, the build environment
also requires the following software components:

• The Java Compiler used to compile the Java AFF source code.

• The Apache ANT Java-based build tool used to control the build process.

• The ClearCase client that retrieves the AFF source code from the ClearCase.

• The ClearQuest client that retrieves defect and feature information associated with a release from
ClearQuest.

The current Build Environment uses the dads3n01 AIX system.

ClearQuest ClearCase

extract files

compile
source

dads3n01 AIX Systemrational2 Server

ANT Java Compiler

ClearQuest Client ClearCase Client

Build

The dads3n01 system is used to extract the source code from ClearCase to a network drive and then to
compile the source code.

 For details, see the AFF AIX Build Deployment Procedures document for details and step-by-step
instructions.

8.3. ClearQuest Defect / Feature Tracking System
The ClearQuest (CQ) defect / feature tracking system is used for tracking change requests in the AFF
implementation environment using a Windows NT server and Windows and AIX clients as shown below in
Figure 266.

Date Last Printed: 9/26/06 Page 410 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Developer
Workstation

Builder
Workstation

resolve

reports

creates
ClearCase
baseline

work-on

Any
Workstation

create / open / assign / modify /
duplicate / postpone / validate / reject / close

AIX EnvironmentsServer

 updates
ClearCase
baselines

queries / reports

Windows 2000
Environments

ClearQuest
Databases

C
Q

 C
lie

nt

Build
Environment

C
Q

 C
lie

nt
C

Q
 C

lie
nt

C
Q

 C
lie

nt

FeaturesDefects

Figure - ClearQuest Overview
Version - 1.2 Date - 2005-07-06

Figure 266: ClearQuest overview

CQ works with the ClearCase source control system to associate each code change in ClearCase with a
defect or feature in CQ; this allows the AFF development team to recreate previous releases and to view
source changes over time.

8.4. ClearCase Source Control System
The ClearCase (CC) source control system is used for configuration control in the AFF implementation
environment using a Windows NT server and Windows and AIX clients as shown below in Figure 267.

Developer
Workstation

Builder
Workstation

check-in
file

extract
release

create
baseline

check-out
file

AIX EnvironmentsServer

 update
baselines

Windows 2000
Environments

ClearCase
Server

C
Q

 C
lie

nt

Build
Environment

C
C

 C
lie

nt
C

C
 C

lie
nt

Source

merge
integration

streams

snapshot
(local copy) integration

stream(s)

deliver stream

rebase stream

Figure - ClearCase Overview
Version - 1.2 Date - 2005-07-06

Figure 267: ClearCase overview

A new AFF release is created as a new project within CC. An AFF Java or Content Developer must join
the new project/release in order to work on it. The process of joining a release creates two views to the
source code:

• a local copy (called a snapshot view) upon which changes are made; this copy is actually stored on
a network share created specifically for this view, which is mounted locally on the developer’s
workstation.

Date Last Printed: 9/26/06 Page 411 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• a remote common copy (called an dynamic integration view) where the changes made in the
snapshot view are delivered

After developer source code deliveries to the integration view have reach an agreed-upon set of
functionality, the builder creates a new baseline which formally integrates the delivered source code into
American FactFinder. Developers must then rebase their snapshot view to incorporate the changes
associated with the new code baseline into their snapshot view (development environment).

 See the AIX Build Procedures on Windows document for details and step-by-step instructions.

integration
stream

ClearCase /
ClearQuest

Development
Workstation

Builder
Workstation

Build
Environment

check-out
file

check-in
file

extract
release

code /
unit test

create baseline
(release)

build
deliver
stream

rebase
stream

Execution
Environment

deploy

Any
Workstation open / modify / close

defect / feature

AIX EnvironmentsWindows NT Environments

merge
integration

stream

Figure - Development Environment
Version - 1.1 Date - 2005-06-20

snapshot
view

A
cc

es
se

s

Figure 268: Development environments overview

8.5. Source Tree
All developers use the same project, directory, and file names to avoid local customization of common
configuration files.

The source tree root directory in the development environment is:
C:\myViews\sv\jamesNNN_m.n\AFF_Rm_CVOB

where jamesNNN is the user’s James Bond ID, m is the AFF major release number, and n is the AFF
minor release identifier. The files within the source tree root directory are under ClearCase control.

The local runtime environment (LRTE) root directory is:
C:\Documents and Settings\jamesNNN\My Documents\IBM\wsad\workspace

where jamesNNN is the user’s James Bond ID. The files within the LRTE root directory are configured
and controlled by WSAD; developers should not explicitly modify these files.

For example, for a developer with a James Bond ID of curti310 and working on AFF release R10.1A,
the source tree root directory is:

C:\myViews\sv\curti310_10.1A\AFF_R10_CVOB

and the local run-time environment root directory is:
C:\Documents and Settings\curti310\My Documents\IBM\wsad\workspace

 See Appendix A. Source Code Tree for details about the structure and contents of the source code
tree.

Date Last Printed: 9/26/06 Page 412 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

8.6. Build and Deployment Workflow
The typical AFF build and deployment workflow is shown below in Figure 269.

Developers

codes

DEV
Developer Test

Environment

IR
Internal Review

Environment

PROD
Production

Environment

Workstation
Developer

Environment PA
Functional Test

Environment

Developers

unit & functional

validation tests

PA Teamfunctional
validation tests

 BOC SMEsacceptance

testing

PA Team

validates

End
Usersuses

Source
Control
System

Build
System

Builders
controls builds
& deployments

D
eliver

Fetch

Stage
Build

Deploy

Distribution
Package

Deploy

Deploy

Deploy

PA Team
"smoke" test

PA Team
performancetesting

A
cceptance

A
cceptance

A
cceptance

Create A
Baseline
(Release)

Figure 269 - Build and deploy workflow

Developers deliver code from their workstations to the source control system. At designated points in the
development cycle, builders create a release by creating a source control baseline (snapshot) of the
release code base.

The builders create and build a release product using a five-step process:

• Fetch – Extract the source code from the source control system.

• Stage – Create and prepare build environment and directory tree.

• Build – Compile the Java and other source code.

• Distribution – Create the JAR package for deployment on an IBM HTTP Server instance.

• Package – Create the EAR/WAR package for deployment on an IBM WebSphere instance.

Release builds and deployments are performed within the AIX environment and use the Ant utility to
organize and execute the software builds and deployment activities.

After building the release, the builder deploys the release to an execution environment. The normal flow
of a release through the execution environments is:

• Deploy the release to the Development Test Environment (DEV). The release must pass developer
unit and functional validation tests and the PA team’s “smoke” test before the release can be
promoted past the DEV environment.

Date Last Printed: 9/26/06 Page 413 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Deploy the release to the Product Assurance Functional Test Environment (PA). The release
must pass comprehensive PA team defined functional validation tests before the release can be
promoted past the PA environment.

• Deploy the release to the Internal Review Environment (IR) on appropriate approval. The release
must pass acceptable tests by BOC Subject Matter Experts (SMEs) and pass performance testing
by the PA team before the release is approved for release.

• Deploy the release to the external Production Environment (PROD) on approval by the program
office and the BOC. After deployment, the PA team runs a final validation of the release in the PROD
environment before the system is made available for use by End Users.

 See the AIX Build Deployment Procedures document for details and step-by-step instructions.

8.7. The AFF Application Deliverable
A release of the AFF Application is delivered in several pieces:

• The EAR file to be deployed on a WebSphere Application Server.

• A collection of tar files containing static content to be deployed on an IBM HTTP Server.

In addition to the compiled Java classes and JSP files, the EAR file includes the pre-packaged content
stored in the /Web Content/arcims, /Web Content/vendor, and /Web Content/w3c directories.

The static content includes the pre-packaged content stored in the /Web Content/http-tars
subdirectory within the source code tree, as well as the static content in the source code tree, including
the directories /Web Content/css, /Web Content/home, /Web Content/img, and /Web
Content/javascript.

Date Last Printed: 9/26/06 Page 414 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

9. SIZING AND PERFORMANCE VIEW

The Sizing and Performance View chapter describes the major dimensioning characteristics of AFF that
affect the architecture, as well as the target performance constraints.

This section provides simple formulas and calculations that show how AFF configuration affects sizing
and performance; however, this chapter section is not a formal capacity model.

9.1. Overview
AFF establishing a queuing network of queues and interconnected components for receiving and
processing a request and for generating and returning a response. The major components are:

• The internet

• The BOC’s Internet Connection

• The Edge Server

• The HTTP Servers

• The WebSphere application servers

• The AFF Application

• The Mapping (ArcIMS) Subsystem

• The Database Subsystems, including both the spatial (ArcSDE/Oracle) and non-spatial (Oracle)
databases.

In addition, these components may have one or more internal queues between internal sub-components.

Each component can handle a limited number of simultaneous requests (in-flight transactions) at any
given point in time. The length of time required by a component to process a request therefore
determines the number of concurrent requests the system can handle within a given time frame.

Example: if a WebSphere clone has 5 threads processing transactions, and takes an average of 10
seconds to process a transaction, then 5 is the number of simultaneous requests and 30 is the number of
concurrent requests for a one minute period (5 threads * 60 secs / 10 secs per request) that can be
handled by the WebSphere clone.

Internet Edge
Server

BOC
Internet
Connection

HTTP
Server

AFF
Application

Web
Sphere

Database
Subsystems

Mapping
Subsystem
[Note 1]

Number of
Concurrent

Requests

Request

Response

Processing (Response) Time
Figure - Size and Performance
Version - 1.2 Date - 2005-05-31

Simple Request

Complex Request

Key

[1] Not all requests to the Database Subsystem pass through the Mapping Subsystem

Figure 270: Sizing and Performance "Funnel"

Date Last Printed: 9/26/06 Page 415 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

In general, as shown in Figure 270 above, requests for complex content, such as tables and maps, go
deeper into the AFF processing “funnel” and are processed by more components, and are passed
through more queues, than requests for simple and static content. The net result is that requests for
complex content have longer processing times and longer response times than the requests for simple
and static content.

Notice that in the funnel, components near the entrance (left-side) can handle a larger number of
concurrent requests than those components deep within the funnel (right-side). This is due, in general, to
the AFF design that the deeper the component is within the funnel, the more expensive the processing.
The counterbalance to this is that AFF is designed such that more requests are satisfied from
components towards the shallow end of the funnel than from deep within the funnel.

Example: A web page that displays a map requires a single request to the Mapping Subystem that takes 5
seconds plus several dozen requests for images, CSS, and JavaScript files that can be satisfied from the
HTTP server in fractions of a second.

AFF also makes extensive use of caching previous results from components, including metadata and
map images, to reduce response time. However, the size and complexity of the data within AFF makes it
impossible to cache more than small fraction of the total data. The current strategy is to cache each
user’s current query selections and the metadata and maps associated with the most common queries.

In short, the sizing and performance tuning of AFF is based upon the analysis of the number of users and
their activity (the number and type of requests). This is a never-ending effort due to the following:

• Increasing complexity of new result products (Population Finder, ACS NPs and MYPs).

• On-going addition of new survey data and data set size (ACS).

• Aging of existing survey data makes older data and result products less interesting (DEC).

• Increasing users (200+% increase since 2002).

• Increasing average user session duration (25% increase since 2002).

• On-going addition of new functionality for usability and other features.

9.2. Users and User Activity
Table 77 defines the AFF terms for the traffic associated with user activity.

Activity Count Definition
Hits The number of requests for a file from the HTTP Server. A single web page often

triggers multiple hits, one for the HTML file and one for each of the page elements such
as images. The browser cache can reduce the number of hits when a page is revisited.
The volume of hits is an indicator of web traffic but is not an accurate reflection of the
number of pages requested. This data is available from the WebTrend reports on AFF
Central.

Page Views The number of hits to files designated as pages; hits for the supporting page elements
are not counted. This data is available from the WebTrend reports on AFF Central.

Visits The number of times a visitor hit AFF. If a visitor is idle longer than a defined idle-time
period, AFF assumes the visit was voluntarily terminated. If the visitor continues after
the idle-time period limit, a new visit is counted. This data is available from the
WebTrend reports on AFF Central.

Table 77: AFF activity counts

Table 78 defines the AFF terms for users counts.

User Count Definition
All The total number of visitors; this is equal to the sum of the users without an HTTP

Date Last Printed: 9/26/06 Page 416 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

User Count Definition
Session plus the number of Active users.
Requests to the HTTP Server for static resources (html, image and other files) are not
handled by the AFF application within WebSphere and thus do not create/update the
HTTP Session. As a result, a visitor that requests only the AFF main page is not
considered an Active User.

Active The number of visitors with an HTTP Session. An HTTP Session is created for the
browser session when a user that initiates an AFF workflow. HTTP Sessions are
discarded after no session activity for a specified time-period. This data is available
from the Daily Reports on User Session Statistics on AFF Central.

Concurrent The number of visitors that can access the site during a defined time slice.

Simultaneous The number of visitors that have a transaction in flight at the same point in time.
Table 78: AFF user counts

The relationships between these counts are shown below in Figure 271.

Hits > Page Views > Visits

All Users > Active Users > Concurrent Users > Simultaneous Users

Figure 271: User and user activity count relationships

9.3. Response Times
AFF targets query response times for defined interactions that are jointly agreed to by the BOC and IBM.
Response time is defined as the time it takes from a user click on a web page to the end of data returning
to the browser.

9.3.1. User Activity Limits and Assumptions
AFF is designed to support a specified number of concurrent users (UConcurrent) before diverting users to
the busy servers.

The theoretical peek simultaneous users (USimultaneous) supported is determined upon with the number of
production legs (L), the number of WebSphere clones (C) within each leg, and the number of worker
(user) threads (W) within each WebSphere clone (1).

 USimultaneous = L x C x W (1)

Figure 272: Maximum simultaneous users

When tuning AFF, the design of AFF allows the number of simultaneous users to be adjusted by
changing the number of legs (L), the number of WebSphere clones (C) within each leg, or the number of
worker threads (W) within each WebSphere clone. What, and how, to tune these values depends on the
hardware resources available.

In theory, USimulaneous is also the percentage (PInFlight) of concurrent users (UConcurrent) that have a transaction
in flight at any given point in time (2). On general, PInFlight is the ratio of transaction response times (TResp)
to the total session duration, which is TResp plus think time (TThink). The usage patterns of AFF show that
TThink is, on average, larger than TResp.

Date Last Printed: 9/26/06 Page 417 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

 USimultaneous = UConcurrent x PInFlight (2)

 PInFlight = TResp / (TThink + TResp) (3)

Figure 273: Maximum concurrent users

In reality, the actual number of concurrent users varies upon the system load and the average response
time; if a large number of users request expensive results then the actual number of concurrent users
may be lower and, similarly, the number of concurrent users may be much higher if a large number of
users are requesting inexpensive results.

A limiting factor is the Edge Servers that throttle the HTTP traffic to avoid overwhelming the HTTP
Servers (“load shedding”). The Edge Servers shunt requests to the Busy Servers when the number of
outstanding HTTP requests is greater than predefined threshold. AFF web pages contain images and
other page elements (CSS and JavaScript files) that must be retrieved from either the browser’s local
cache or requested from the HTTP Server if not in the browser’s local cache. AFF uses a small, common
set of page elements to avoid having the browser request multiple page elements per result page but this
is not always possible, especially in the case of customized thematic maps. As a result, the actual values
of USimultaneous and UConcurrent can be slightly less than the theoretical maximums when there is a sustained
high rate of incoming requests that generate large and complex result pages.

9.3.2. Performance Testing
The peak and stress activity limits are verified by performance testing using a set of predefined test
scenarios.

The performance peak and stress tests are described in the AFF Performance Test Plan.

9.4. Network Bandwidth
AFF has multiple networks for which bandwidth may be an issue:

• Internet Connection – the network between the Bowie data center and the Internet. This T3 network
has a bandwidth of 45 Mb/s (about 4.5 MB/s). Note that this bandwidth is shared with other BOC
applications and users.

• Fibre SAN – the fibre network between the Enterprise Storage Server and the Application and
Mapping servers running on SP2. This network has a bandwidth of 1000 Mb/s (about 100 MB/s).

• DADS NET – the Ethernet network between the AFF production systems and both the Internet and
the Census Intranet. This network has a bandwidth of 100 Mb/s (about 10 MB/s).

• SP Switch Con – the high-speed network internal to the SP2 between the AFF production system
components, including the web servers, the application servers, the database servers, and the
mapping servers. This network has a bandwidth of 300 MB/s, split into two 150 MB/s bi-directional
channels.

• SP NET – the Ethernet network between the Tape Library and the AFF servers, including the SP2
system and the Edge and Busy Servers. This network has a bandwidth of 100 Mb/s (about 10 MB/s).

• AFF NET – the Ethernet network between the Edge Servers and the SP2 and the Busy Servers. This
network has a bandwidth of 1000 MB/s (about 100 MB/s).

Figure 274 below shows a high-level overview of these AFF networks and their relationships with AFF
significant components in the AFF production environment.

Date Last Printed: 9/26/06 Page 418 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Enterprise Storage
Server

Census Intranet

SP2

SP Switch Con

Edge Servers

Busy Servers

Unavailable Server

Tape Library

Figure - High Level Network Sizing Overview
Version - 1.2 Date - 2005-05-27

AFF
NET

Fibre
SAN

Internet

SP
NET

100 Mbs

100 Mbs

1000 Mbs

150 MB bi-directional

45 Mbs

DADS
NET

Internet
Connection

1000 Mbs

Figure 274: High-level overview of AFF network and component relationships

The two networks where bandwidth is a concern are the Internet Connection and the DADS NET.

The Internet Connection bandwidth is the slowest network speed in the system and the network by which
all external users access American FactFinder.

The DADS NET connects the Internet Connection to the DADS production environment, and connects the
DADS production environment to the DADS development and test environments. As the DADS NET
bandwidth is currently larger than the Internet Connection bandwidth, the DADS NET is not normally a
bottleneck on operations. However, certain DADS production support tasks can saturate the DADS NET
that result in negative impacts to the flow of traffic between the AFF production systems and the Internet
Connection. In particular, the propagation of a new data warehouse (1+ TB) from the test environment to
the production environment is a known problem if the firewall between the development and production
environments is not configured correctly. The solution to this issue is to verify firewall configuration and to
perform these tasks during off hours when AFF traffic is low.

9.5. Application Performance Techniques
The following techniques are used within the application to enhance performance:

• Initial entry pages are static HTML documents

• Dynamic metadata query result caching

• Dynamic data warehouse query result caching

• User session caching of user state instead of passing state in request/response parameters

• User session caching of objects associated with user selections

• Use of multiple user session contexts to cache workflow-based user selections

• Dynamic caching of map images

• Selected result maps are pre-built

Date Last Printed: 9/26/06 Page 419 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Initializing cache objects from serialized objects stored on disk

• Search engine oriented navigation pages are static HTML files

9.6. Non-Application Performance Techniques
The following techniques are used to outside of the AFF application to enhance performance and
reliability:

• Daily restarts of applications to avoid any possible build-up issues with application resources; the legs
are restarted in sequence to avoid system downtime (i.e. this process is invisible to end-users).

• Monthly reboots of systems to avoid any possible build-up issues with system resources

• Use of multiple systems and instances (legs and clones) to maximize hardware usage and increase
reliability with a common session database

• Use of IBM edge server technology to spray user requests across multiple legs to distribute the load

• Use of the WebSphere Work Load Manager (WLM) to distribute requests between clones to distribute
the load

• Use custom advisors to help the edge server and WLM distribute the traffic based upon current
hardware and software load and status

• Use of the “sticky bit” feature in the edge server and WLM to direct user requests for the same user
back to the same WebSphere clone instance

• RAID storage systems for high availability and increased throughput

• Multiple physical networks partition network traffic

9.6.1. Custom Advisors
In addition to redirecting incoming HTTP requests based upon overall activity, the Edge Servers
periodically request status from the WebSphere and Mapping Subsystems each in leg. The Edge Server
analyzes the status reported and rebalances/redirects incoming requests as needed to ensure optimal
performance. The reported Subsystem status is one of:

OK = System Available – Internal response time within a defined threshold

Slow = System Available – Internal response time exceeded threshold

Out = System Not Available (also if Subsystem does not respond)

As shown below in Figure 275, the WebSphere custom advisor queries the status of the major
databases, including the English and Spanish metadata repositories (MDRs), the Data Warehouse (DW),
the HTTP Session database, and the Spatial database via WebSphere. The Mapping Subsystem custom
advisor queries a flag setting to determine if the Mapping Subsystem is available.

Date Last Printed: 9/26/06 Page 420 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Leg
Mapping Subsystem

WebSphere Subsystem

Edge Server

OK / Slow / Out

Session
DB

English
MDR

Spanish
MDR

Data
Warehouse

Spatial
DB

Query

OK / Out

Custom Advisor Custom Advisor

Request Status Request Status

HTTP Server

Figure - Custom Application Advisor
Version - 1.1 Date - 2005-01-31

File

Query

Figure 275: Custom Advisors

The Custom Advisors report status by a Clone, Repository, Leg, and Subsystem, not for all clones within
the WebSphere Subsystem, nor for each ArcIMS instance within the Mapping Subsystem.

The status reported to the Edge Server is available for review using the Daily Reports on Edge Server
Activities found on AFF Central.

Date Last Printed: 9/26/06 Page 421 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

10. QUALITY

This chapter describes how the AFF architecture contributes to non-functional capabilities; these non-
functional requirements (NFRs) include:

• Correctness: the degree with which AFF adheres to its specified requirements

• Reliability: the frequency and criticality of software failure, where failure is an unacceptable effect or
behavior occurring under permissible operating conditions

• User Friendliness: the ease with which users learn and use AFF

• Maintainability: the ease with which changes can be made to AFF in order to satisfy new
requirements or to correct defects

• Efficiency: the ease with which AFF fulfills its purpose without waste of resources

• Portability: the ease with which AFF can be used on systems other than its current one

The latest AFF NFRs are formally documented in Section 5. AFF Nonfunctional Requirements in the
document AFF Release 9.3 Content for Program DADS American FactFinder, Version 1.5, November 11,
2003 which is located in the repository in the file I:\BA\zzz Old Folders\BA\R9.3\08 Work
Products\Content Plan\AFF R9.3 content v1.5.doc.

10.1. Correctness
AFF establishes controls over the implementation and deployment process to ensure correctness. These
controls include:

• AFF does not contain Title 13 data. BOC data provider organizations are responsible for ensuring the
data is appropriately prepared for dissemination before the data is provided to AFF for dissemination.

• A change management system integrated with a source code control system.

• A change control process that requires all new features to be approved by the change control board
before implementation.

• The logical and physical separation of the development, test, internal review, and production
environments with tightly controlled deployments between environments.

• Review periods for verification and validation of data and code releases by subject matter experts.
These reviews occur on the internal review environment after development has finished but before
deployment of systems to the production environment.

• A user feedback subsystem for collecting and analyzing user comments, questions, and error reports.

• The monitoring and analysis of the WebTrends Technical Statistics to find application and
deployment problems including Page Not Found (404) and Server (500 series) Errors.

• AFF is verified as being Y2K compliant.

10.2. Reliability
AFF ensures reliability using a variety of coding and monitoring techniques. These techniques include:

• The separation of the presentation layer implementation from the business layer implementation
using the model-view-controller paradigm. This separation isolates changes made in one layer from
affecting other layers.

• The use of multiple, redundant production systems (two legs with backup systems for shared
components) to eliminate single points of failure within the production environment.

Date Last Printed: 9/26/06 Page 422 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Dynamic load balancing across production legs to ensure reasonable response times to user
requests.

• The use of separate AFF development, test, internal review, and production environments to prevent
changes in one environment from affecting other environments.

• Controlled access to AFF source, data, and systems using a combination of firewalls, networks,
passwords, and role-based user accounts.

• AFF issues/maintains/revokes user accounts as needed to control access to AFF sensitive areas;
these user accounts are managed in accordance with BOC Security Management Guidelines

• Real-time monitoring of AFF that provides early notification of possible problems including hardware
failures, software failures, and system stress from heavy traffic that enables automatic failover
between the production legs.

• The analysis of AFF logs, including system load and application resource usage, to understand the
performance of AFF; the analysis results drive future AFF NFRs and functional enhancements.

• The use of periodic performance testing to ensure that AFF handles the expected peak load.

• Deleting or otherwise cleaning up all temporary work products with expired session identifiers or not
referenced for a well-defined time period.

• Handling “database offline” exceptions without “crashing”.

• Handling “filesystem full” exceptions without “crashing”.

• Handling “mapping server failure” exceptions without “crashing”.

• Handling “external-server-to-internal-server connectivity failure” exceptions without “crashing”.

• Having an architecture and design such that the sub-systems rely on public interfaces to interact with
each other and thus allow changes to be made to the internals of a sub-system with minimum impact
on the other dependent systems

10.3. User Friendliness
AFF achieves user friendliness using a variety of techniques to ensure that AFF is eary to learn and use.
These techniques include:

• Usability testing on the user interfaces to ensure, in part, that users can easily navigate AFF to find a
result product that contains the answer to their query.

• Conforming with the U.S. Department of Justice’s Section 508 which requires that Federal agencies'
electronic and information technology is accessible to people with disabilities, including employees
and members of the public.

• Session management by user task (context) to avoid repeated user selections.

• Supporting multiple user interfaces targeted at different audiences and tasks.

• Context sensitive help and on-line tutorials.

• Performance tuning for reasonable response time to user requests.

• Collecting and analyzing user activity statistics to understand user behavior within AFF; the analysis
results drive future AFF NFRs and functional enhancements.

• Allowing entry points to the start of a session other than through the main page, including the ability to
bookmark a result page and to deep-link to a page using documented URL parameters.

• Supporting bookmarking from points in the application where the user begins to enter a request or
sees a result.

Date Last Printed: 9/26/06 Page 423 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Ensuring that multiple paths to the same result product display the same result.

• Allowing users to resubmit requests after a system task failure.

The following goals do not have measurable success criteria, but are based on subjective ease of use
ratings. Successful adherence to these requirements ensures achievement of the usability goals.

The AFF user interface is designed to:

• Be well organized

• Promote a feeling of progress and achievement

• Have actions that are predictable and reversible

• Respond as expected based on the user actions

• Reflect the user’s tasks, goals, and mental model

• Allow users to feel comfortable with exploration

• Support the user model

• Minimize clutter and graphics

For example, breadcrumbs are AFF user interface elements added to help achieve the above goals.

The test plan for the usability goals are described in the document DADS 2000 Usability Test Plan,
Version 1.3, June 12, 2000 which is located in the repository in the file I:\AFF\AFF Generic\12
Quality\2000 Usability Testing\AFF Usability Test Plan 1_3.doc.

10.3.1. Client Support
AFF supports a matrix of user agents (browsers) and operating systems; the matrix is updated every AFF
release cycle based upon the user agents and operating systems reported by the WebTrends data; the
goal is to support majority (90+%) of visitors to AFF.

AFF is a “web standards” implementation and should support any user agent and operating system
combination that supports web standards.

Currently, AFF tests client support for the following user agent and platform combinations:

• Internet Explorer 6.0 on Windows XP

• Internet Explorer 5.5 on Windows 2000

• Internet Explorer 5.0 on Windows 98

• Netscape Navigator 7.1 on Windows 2000 (BOC standard)

The above user agent and platform combinations test a majority of the user agent and platforms reported
by AFF visitors.

For the month of November 2004, the matrix of user agents reported 1 by WebTrends is:

User Agent Percent of Visits

Microsoft Internet Explorer 85%

 Internet Explorer version 6.x 78%

 Internet Explorer version 5.5 4%

1 User Agents with less than 0.1% of Visits are include under Others, data is for log entries that recorded a User
Agent.

Date Last Printed: 9/26/06 Page 424 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

User Agent Percent of Visits

 All other IE versions 3%

Netscape / Mozilla 14%

 Netscape 5.0 (Mozilla / Firefox) 6%

 Netscape Compatible 5%

 All other Netscape versions 3%

Others 1%
Table 79: User Agents reported in the September 2004 WebTrends monthly report

For the month of November 2004, the matrix of platforms reported 2 by WebTrends is:

Platform Percent of Visits

Windows 82%

 Windows XP 54%

 Windows 2000 17%

 Windows 98 7%

 Windows ME 3%

 Windows NT 1%

 Other Windows > 0.1%

Macintosh 3%

Others 16%
Table 80: Platforms reported in the September 2004 WebTrends monthly report

10.4. Maintainability
AFF is designed and implemented using techniques and technologies that make AFF easy to debug and
maintain, including the implementation of new features and the correction of defects. These techniques
and technologies include:

• A metadata-driven driven implementation that allows the use of data-driven common code.

• A well-designed object-oriented implementation that permits code reuse and that supports a layered
design in which new functionality is implemented as layers around (extensions) to the existing
implementation.

• Following industry standard design patterns, such as the model-view-controller paradigm, that are
well-known and well-understood.

• Using industry standard technologies such as AIX, WebSphere, IBM HTTP Server (Apache), Java,
JavaScript, CSS, HTML and XML.

• A well-documented implementation that follows established standard and conventions, including
JavaDoc and the use of change management and source control systems to track changes.

• Configurable logging that allows variable logging based upon the current need.

2 Platforms with less than 0.1% of Visits are included under Others, data is for log entries that recorded a Platform.

Date Last Printed: 9/26/06 Page 425 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• Having AFF write to a common log in the event of an AFF exception. The common log is processed
on a regular basis to create exception reports for diagnostic analysis; these reports are accessible
from AFF Central.

10.5. Efficiency
AFF is designed to use application and system resources efficiently using a collection of techniques,
including:

• User session contexts that cache user state and query selections that avoid burdening each web
page with the user’s state.

• Database caching that reduces the number of database hits by caching query results in persistent
objects. AFF cache support includes:

• On startup, populating caches for popular query results with pre-built cache entries

• Dynamically building caches based upon user activity

• Map image caching that reduces the number of mapping system requests by caching map images on
disk. Like database caching, AFF supports both pre-built and dynamic map image caches.

• Database connection pooling that reduces demand upon database resources.

• Thread pooling that prevents overwhelming application resources.

• The use of configuration files and a real-time configuration change system for tuning caching and
pooling settings.

10.6. Portability
AFF uses standard tools and APIs to ensure portability. In general, AFF avoids using special features
available only on limited platforms for both the back-end application and the user agent (browser).

The back-end uses industry standard programming languages and APIs, including:

• Java

• Perl

• J2EE

• SQL

• JDBC

AFF uses industry standard protocols, including:

• HTTP

• FTP

In addition, the third-party software packages used by AFF are supported on multiple platforms; these
software packages include:

• ESRI ArcIMS

• IBM HTTP Server

• IBM WebSphere

• Oracle DBMS

AFF uses well established and widely supported Web Standards, and does not require user agents to
load custom or special plug-ins. The web standards required by AFF include:

Date Last Printed: 9/26/06 Page 426 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

• HTML / DHTML / XML

• Cascading Style Sheets (CSS)

• JavaScript

• Standard Fonts (Helvetica/Arial/Tahoma/sans-serif and Futura/Times/serif)

• Standard File Formats (GIF, JPG, TXT, CSV, XLS, ZIP, PDF)

• Session Cookies

Date Last Printed: 9/26/06 Page 427 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

APPENDIX A. SOURCE CODE TREE

A.1. Source Tree Root Directory
The AFF source tree’s root directory is shown below in Figure 276.
C:\myViews\sv\jamesnnn_Rm.n\AFF_Rm_CVOB\
│
├───…project configuration files…
│
├───Java Source
│ └───gov
│ └───census
│ └───…AFF Java source…
│
└───Web Content
 └───…AFF non-Java source…

Figure 276: AFF source tree root directory

The project configuration files used by the development tools and the run-time environments are stored in
the root directory and should only be modified by the system administrators; developers should never
need to modify these files directly.

All Java source files are stored under the Java Source/gov/census directory path. The JavaDoc
documentation for Java source files used to build an AIX AFF instance is available via the AFF API
Documentation hyperlink on the About AFF page associated with the AFF instance. The About AFF
pages for AFF instances are available from hyperlinks on the main page of the AFF Central user
interface.

All non-Java source files (JSP, JavaScript, HTML, etc) are stored under the Web Content directory path.

The two directory trees (Java Source and Web Content) are outlined, and their contents described, in
the following sections.

A.2. Java Source/gov/census Directory
The Java Source/gov/census directory contains the Java source code that implements AFF. The
source files in this directory are organized into the subdirectories shown below in Table 81.

Subdirectory Contains The Java Source Files For

aff Core AFF.

cws The Congressional Web Site (CWS) user interface.

infrastructureservices The database access (JDBC) interface.

phc The Population and Housing Characteristic (PHC) reports.

saff The Simple AFF (SAFF) user interface.

Table 81: Subdirectories in the Java Source/gov/census directory

A.3. Java Source/gov/census/aff Directory
The Java Source/gov/census/aff directory contains the java source for the Core AFF
implementation organized into subdirectories by functionality as shown below in Table 82.

Date Last Printed: 9/26/06 Page 428 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Directory Description

access This package provides methods for restricting access to the AFF
administrative functionality available in the AFF Central user interface and
implemented by the JSPs in the Web Content/jsp/nodeploy directory.

catalog This package provides classes to access values from property files, which are
used throughout AFF. The supporting property files are located in the
Web Content/properties directory.

controller This package contains all classes and interfaces to support the handling of an
HTTP request. This is where all the Servlets reside. A controller is an entry
point into AFF. The primary responsibility of a controller is to parse HTTP
parameters and call the necessary services to hydrate and then forward a
View Adapter to a JSP.

dataAccess This package provides classes for retrieving a JDBC DataSource object. A
DataSource object is the preferred means of getting a connection to a
database.

debug This package provides a class to centralize all debugging code switches. The
AffDebug class is used quite a bit in the dataAccess package.

domain This package provides classes that create domain objects. Builder objects
encapsulate all SQL (business logic) and database connectivity.

key This package contains the base class for all AFF Keys. Keys are used in AFF
to hold all the information necessary to create a domain object from a
database.

logging This package contains the classes to support the logging function in AFF.

persistence This package contains the classes to support caching of domain objects
throughout American Fact Finder.

pool This package contains classes to provide a generic object pool to facilitate
the reuse of objects.

registry This package provides objects that help automate runtime updates across
several WebSphere clones, e.g., flush the cache of a Persistent Factory in a
particular clone.

service This package contains all services for AFF. A service is called by a controller
(Servlet) and interacts with factories to create domain objects.

util This package contains general-purpose classes used throughout the AFF.

viewAdapter This package contains all View Adapters (Java Bean) for AFF. View Adapters
contain all information required to render an HTML page for a request. View
Adapters are forwarded to a JSP for display

xml XML parser used throughout the mapping and logging functions within AFF.

Table 82: Subdirectories in the Java Source/gov/census/aff directory

A.3.1. Java Source/gov/census/aff/controller Directory
The Java Source/gov/census/aff/controller subdirectory contains the controller
implementation classes organized into subdirectories by functionality as shown below in Table 83.

Date Last Printed: 9/26/06 Page 429 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Directory Description

advancedsearch This package provides the controller layers used exclusively within the
Advanced Search path.

advisor Enterprise Node Dispatcher (END) Advisor Code. Used to monitor the
health of the external AFF application.

basicFacts This package provides the controllers (Servlets) used exclusively within the
Basic Facts path.

Chariter This package provides the controllers (Servlets) used exclusively within the
Chariter path.

common This package provides common controllers and helper classes used
throughout American Fact Finder including AFFServlet.

customtable This package provides the controllers (Servlets) used exclusively within the
Custom Table path.

dataextract This package provides the controller that handles all download requests
within American Fact Finder.

dataset This package provides the controllers (Servlets) used exclusively within the
Dataset path.

Dispatcher This package provides a class defining events; primarily used throughout
the Custom Table path.

econ This package provides the controllers (Servlets) used exclusively for the
Economic portion of AFF.
Note: Subdirectories were created so developers could work in parallel.

econ/finddatasets This package provides the controllers (Servlets) used exclusively within the
Economic Find a Dataset path.

econ/iqr This package provides the controllers (Servlets) used exclusively within the
Industry Quick Report path.

econ/quickreports This package provides the controllers (Servlets) used exclusively within the
Economic Quick Report.

feedback This package provides a controller (Servlet) that captures user feedback.

formatter This package provides an IFormatter interface that is implemented in some
of the specialized formatter classes.
Note: The classes contained in the formatter subdirectories are not by definition
controllers. Moving to another package should be considered in future releases.

formatter/csv This package provides methods to render an AFF table in a comma or tab
separated format.

formatter/rtf This package provides methods to render an AFF Table in a Rich Text
Format.

formatter/xls This package provides methods to render an AFF Table in an Excel Format.

geocomponent This package provides the controller layer for geographic component
selection.

Date Last Printed: 9/26/06 Page 430 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Directory Description

map This package provides the controllers and helper classes supporting the
creation and customization of Thematic, Reference and Geography
Selection maps throughout AFF. This package also contains the search by
address controller.

map/pdf This package provides the controllers and helper classes to support the
downloading of maps in PDF format.

Mapcacheprimer A tool to pre-populate map cache. Note: No longer used.

metadataBrowser This package contains the controller layer to support the metadata browser
used throughout AFF.

relatedItems This package contains the related items controller used throughout AFF.

search This package contains controller and helper classes supporting the list and
keyword geography selection methods used throughout AFF.

subject This package contains the controller classes supporting the selection of
tables by subject, keyword, and show all tables.

subject/thematicmaps This package provides the controller layers for show all thematic map
themes and search by theme keyword.

table This package contains controller layers used throughout American Fact
Finder to create a table.

test This package contains controllers that aren’t part of the core AFF source
code. Primarily used for testing.

whatsnew This package provides the controller (Servlet) used exclusively within the
What’s New path.

Table 83: Subdirectories in the Java Source/gov/census/aff/controller directory

A.3.2. Java Source/gov/census/aff/dataAccess Directory
The Java Source/gov/census/aff/dataAccess subdirectory contains the classes for accessing
and processing data stored in a database. Also contained are wrapper classes for monitoring, profiling,
and logging access to the database. These classes are primarily used in building domain objects at the
builder layer. Some of the architecturally significant files are described in the following table.

File Description

DataSourceInfo Contains information about the datasource. Instances of this class should
be accessed through methods in AffDataSourceMgr.

AFFDatasource This class collects behavior associated with a DataSource. It should be
sub typed to define how a java.sql.Connection is actually obtained from a
DataSource.

AdvisorDataSource Subtype of AffDataSource defining the DataSource for the Advisor
database.

AFFCallableStatement Wraps a java.sql.CallableStatement to provide profiling information.

AFFConnection Wraps a java.sql.Connection to provide profiling information.

AffDataSourceMgr This class is a central point of info about database data sources.

Date Last Printed: 9/26/06 Page 431 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

File Description

AFFPreparedStatement Wraps a java.sql.PreparedStatement to provide profiling information.

AFFResultSet Wraps a java.sql.ResultSet to provide profiling information.

AFFStatement Wraps a java.sql.Statement to provide profiling information.

ApplicationDataSource Subtype of AffDataSource defining the DataSource for the Application
database.

GeographyDataSource Subtype of AffDataSource defining the DataSource for the Geography
database.

JDBCMonitor This class is used with AFFConnection, AFFStatement,
AFFPreparedStatement, AFFCallableStatement, and
AFFResultSet to monitor database activities.

LogSource Subtype of AffDataSource defining the DataSource for the logging
database.

MetadataDataSource Subtype of AffDataSource defining the DataSource for the English and
Spanish Metadata database.

UserSource Subtype of AffDataSource defining the DataSource for the Feedback
database.

WarehouseDataSource Subtype of AffDataSource defining the DataSource for the Warehouse
database.

Table 84: Architecturally significant files in the Java Source/gov/census/aff/dataAccess directory

A.3.3. Java Source/gov/census/aff/debug Directory
The Java Source/gov/census/aff/debug subdirectory contains a class used to turn debugging on
or off. Some of the architecturally significant files are described in the following table.

File Description

AffDebug Toggle debugging code switches.

Table 85: Architecturally significant files in the Java Source/gov/census/aff/debug directory

A.3.4. Java Source/gov/census/aff/domain Directory
The Java Source/gov/census/aff/domain subdirectory contains the domain (models)
implementation classes organized into subdirectories by functionality as shown below in Table 86.

Directory Description

advancedsearch This package contains the factory and builder layers to support the advance
search functionality. Keys are also included.

basicFacts This package contains the factory and builder layers to support the Basic
Facts functionality. Keys are also included.

browse This package contains the factory and builder layers to support the browse
functionality. Keys are also included.

chariter This package contains the factory and builder layers to support the selection of
character iterations. Keys are also included.

Date Last Printed: 9/26/06 Page 432 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Directory Description

common This package contains common classes used throughout AFF.

customtable This package contains the factory and builder layers to support the creation of
custom tables. Keys are also included.

dataextract This package contains the factory and builder layers to support the
downloading of tables. Keys are also included.

dataset This package contains the factory and builder layers to support the selection of
datasets. Keys are also included.

econ Root directory.

econ/finddatasets This package contains the factory and builder layers to support the Economic
Finn a Dataset path. Keys are also included.

econ/iqr This package contains the factory and builder layers to support the Economic
Industry Quick Reports path. Keys are also included

geocomponent This package contains the factory and builder layers to support the selection of
geographic components. Keys are also included

geography This package contains the factory and builder layers to support the geographic
selections throughout AFF. Keys are also included

map This package contains the factory and builder layers to support the creation of
Maps. Keys are also included

map/ims Parent package. Content is located in subdirectories.

map/ims/acetate This package contains classes, which represent IMS acetate objects. Acetate
objects are similar constants e.g., lines, footers, etc…

map/ims/common This package contains utility and exception classes to support the use of
ArcIMS.

map/ims/connection This package provides methods for establishing communication with the
ImsCore. Exceptions are included as well.

map/ims/symbol This package contains Java encapsulations of XML tags used in forming
ArcIMS requests. These tags (e.g. GroupRenderer, ScaleDependentRenderer,
CustomLegend etc.) specify rules, which ArcIMS uses in rendering a map. For
example a ScaleDependentRenderer is used to specify if a layer should be
drawn/not drawn at a given scale."

mapcacheprimer This package provides methods for caching maps. No longer used.

mapcachestatistics This package provides methods for capturing statistics on cached maps.

metadata2 This package contains factory and builder layers to support the access to
metadata necessary for custom and shell table generation. Keys are also
included.

metadataBrowser This package contains the factory and builder layers for the metadata browser.

population This package contains the factory and builder layers for the population data
series functionality in AFF. Keys are also included.

queries This package contains classes supporting the custom table data element
selection.

Date Last Printed: 9/26/06 Page 433 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Directory Description

queries/subject This package is obsolete.

relatedItems This package contains the factory and builder layers to support the Related
Items function used throughout AFF. Keys are also included.

search This package contains the builder layer to support geographic keyword
searches.
Note: It appears a factory wasn’t created. A decision was probably made to ignore the
factory layer since search results are usually never cached.

series This package contains the factory and builder layers supporting the Population
Series function in AFF.

subject Package contains factory and builder layers supporting multiple paths. Some
investigation is needed.

table Parent package.

table/common This package contains classes used throughout the table subdirectories.

table/custom This package contains factory and builder layers to support the creation of
custom tables. Keys are also included.

table/matrixTable This package contains factory and builder layers to support the creation of
matrix tables. Keys are also included.

table/savedQuery This package contains classes supporting the save query function.

table/shellTable This package contains factory and builder layers to support the creation of
shell tables. Keys are also included

table/summaryTable This package contains factory and builder layers to support the creation of
summary tables. Keys are also included.

whatsnew This package contains factory and builder layers to support the creation of a
what’s new domain object

Table 86: Subdirectories in the Java Source/gov/census/aff/domain directory

A.3.5. Java Source/gov/census/aff/key Directory
The Java Source/gov/census/aff/key subdirectory contains the base class of all AFF Keys. Some
of the architecturally significant files are described in the following table.

File Description

AFFKey This is the base subtype of all AFF Keys. Keys are used in AFF to hold all the
information necessary to create an object from a database.

Table 87: Architecturally significant files in the Java Source/gov/census/aff/key directory

A.3.6. Java Source/gov/census/aff/logging Directory
The Java Source/gov/census/aff/logging subdirectory contains classes used to monitor user
activities. Some of the architecturally significant files are described in the following table.

File Description

LogHydrateUtil Class used to log user activities.

Table 88: Architecturally significant files in the Java Source/gov/census/aff/logging directory

Date Last Printed: 9/26/06 Page 434 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

A.3.7. Java Source/gov/census/aff/persistence Directory
The Java Source/gov/census/aff/persistence subdirectory contains the classes to support
caching of domain objects throughout American Fact Finder. Some of the architecturally significant files
are described in the following table.

File Description

Cache Base class.

Cache_Stub Stub class generated by rmic, do not edit.

CacheRegistry Create and bind (to RMI Registry) instances of all the persistent
factory remote caches.

CacheSortedAccessAge Extends Cache to implement a particular caching policy.

CacheSortedAccessAge_Stub Stub class generated by rmic, do not edit.

CacheStatic Implements a statically sized cache with static cache entries.

CacheStatic_Stub Stub class generated by rmic, do not edit.

ICacheMaintainableStrategy Defines all the methods that are used to manage a cache.

ICacheStrategy This class implements basic caching operations.

Persistent All objects that are created by a PersistentFactory must inherit from
this class.

PersistentBuilder This is obsolete.

PersistentException Exception generally thrown in PersistentFactory.

PersistentFactory This is the base class for all factory objects

PersistentFactoryRegistry This is a registry of all the PersistentFactory singleton instances in
AFF.

PersistentKey PersistenKey interface.

PersistentObject PersistentObject extends Persistent

PersistentSet An additional type of object that may be created by a
PersistentFactory

Table 89: Architecturally significant files in the Java Source/gov/census/aff/persistence directory

A.3.8. Java Source/gov/census/aff/pool Directory
The Java Source/gov/census/aff/pool subdirectory contains classes to provide a generic
object pool to facilitate the reuse of objects. Some of the architecturally significant files are described in
the following table.

File Description

IObjectPool This is a generic interface for using an object pool.

ISavableState This is used to indicate that an object will return its state information
as a string.

ObjectPool This class is based on a class specified in "Java Performance and
Scalability V1". It provides a generic object pool to facilitate the reuse
of objects.

Date Last Printed: 9/26/06 Page 435 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

File Description

ObjectPoolSortedAccessAge This general-purpose object pool reuses objects in the pool according
to the duration of time since they have been used.

PoolEntry Base type for entries managed by object pools.

TimeStamp Adds a time stamp to the PoolEntry.

TimeStampSortedAge This is used as part of an ordered list, sorted by a last-access
timestamp inside ObjectPoolSortedAccessAge.

Table 90: Architecturally significant files in the Java Source/gov/census/aff/pool directory

A.3.9. Java Source/gov/census/aff/registry Directory
The Java Source/gov/census/aff/registry subdirectory contains classes to register objects.
Some of the architecturally significant files are described in the following table.

File Description

AFFRegistry Use this class to register objects for whatever reason you
need

AFFRegistryCommand Registry commands are specified by an
AFFRegistryCommand instance

AFFRegistryCommandControl This class creates a base class for Registry objects that
helps automate runtime updates of the registry entries across
several processes

IAFFRegistryCommandControlEntry

Instances of entries in a Registry object that inherits from
AFFRegistryCommandControl need to implement this
interface.

Table 91: Architecturally significant files in the Java Source/gov/census/aff/registry directory

A.3.10. Java Source/gov/census/aff/service Directory
The Java Source/gov/census/aff/service subdirectory contains the service implementation
classes organized into subdirectories by functionality as shown below in Table 94.

Directory Description

advancedsearch Contains the service layers to support the advance search function.

basicFacts Contains the service layers to support the basic facts function.

browse Contains the service layers to support the browse function

chariter Contains the service layers to support the character iteration function

customtable Contains the service layers to support the custom table function

dataextract Contains the service layers to support the download function used throughout
AFF.

dataset Contains the service layers to support the dataset selection function.

econ Contains the service layers to support economic functionality used throughout
AFF.

geocomponent Contains the service layers to support the geography component function.

Date Last Printed: 9/26/06 Page 436 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Directory Description

map Contains the service layers, interfaces, and exception classes to support the
mapping function used throughout AFF.

metadataBrowser Contains the service layers to support the metadata browser function used
throughout AFF.

population Contains the service layer for the SAFF Population Finder.

relateditems Keys supporting the Related Items function.

search Contains the service layers to support search functions used throughout AFF.

subject Contains the service layers to support retrieval of subjects, datasets, lists of
tables and themes.

table Services layers to support the table creation function used throughout AFF.

whatsnew Contains the service layers to support the what’s new function.

Table 92: Subdirectories in the Java Source/gov/census/aff/service directory

A.3.11. Java Source/gov/census/aff/session Directory
The Java Source/gov/census/aff/session subdirectory contains classes to retrieve state
information and hydrate/create domain objects for a specific context. The session manager is
instantiated using an init parameter and the session managers validateParameters (…) abstract method
is then called. This operation is done in the AFFServlet base class prior to the processRequest
(aRequest, aResponse) abstract method implemented by most controllers, assuming the MANAGER init
parameter is set. Some of the architecturally significant files are described in the following table.

File Description

ADPSessionManager ACS Data Profile session manager.

BasicFactsSessionManager Basic Facts session manager.

CTSessionManager Custom Tables session manager.

CWSSessionManager Congressional Web Site session manager.

DTSessionManager Detailed Table session manager.

EconSessionManager Economic session manager.

GCTSessionManager Geographic Comparison Table session manager.

GQRSessionManager Geographic Quick Reports session manager.

IBQSelectionSessionManager Industry Build a Query Selection session manager.

IBQSessionManager Industry Build a Query session manager.

IQRSelectionSessionManager Industry Quick Report Selection session manager.

IQRSessionManager Industry Quick Report session manager.

IUserSession This interface contains constants used by session managers.

MultiGeoSessionManager Creates geographies for multi-geo classes, QTSessionManager and
DTSessionManager.

PQRSelectionSessionManager Product Quick Reports Selection session manager.

Date Last Printed: 9/26/06 Page 437 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

File Description

PQRSessionManager Product Quick Reports session manager.

QTSessionManager Quick Tables session manager.

RMSessionManager Reference Maps session manager.

SAFFSessionManager Simple AFF session manager.

SessionManager Base class for all manager classes.

TMSessionManager Thematic Maps session manager.

Table 93: Architecturally significant files in the Java Source/gov/census/aff/session directory

A.3.12. Java Source/gov/census/aff/util Directory
The Java Source/gov/census/aff/util subdirectory contains utility classes used throughout AFF.
Some of the architecturally significant files are described in the following table.

File Description

/advancedSearch Classes and Interfaces to support the Advanced Search function.

/ctxparse Classes supporting the parsing/translation of a search term prior to the
execution of an Oracle InterMedia search based on a set of rules. If the
search term fails the validation, an error is thrown.

/dbmonitor Not sure if these classes are used.

/exceptionHandling General exception classes used throughout AFF.

/productionManager Classes that implement a Producer/Consumer pattern.

/subject Provides methods to handle the display of large text. The length of the largest
text needed to be determined to properly size the Select form element.

Table 94: Architecturally significant files in the Java Source/gov/census/aff/utildirectory

A.3.13. Java Source/gov/census/aff/viewAdapter Directory
The Java Source/gov/census/aff/service subdirectory contains the view adapter
implementation classes organized into subdirectories by functionality as shown below in Table 97.

Directory Description

advancedsearch View adapters to support the advanced search path in AFF.

BasicFacts View adapters to support the basic facts path in AFF.

Chariter View adapters to support the character iteration function in AFF.

Common Common view adapters and interfaces used throughout AFF. The panel ids
are defined in this package.

Dataextract View adapters to support the downloading functionality used throughout AFF.

dataset View adapters to support the Data Set selection path.

econ Root directory for the Economic Area.

econ/finddatasets View adapters to support the Find a Dataset path.

Date Last Printed: 9/26/06 Page 438 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Directory Description

econ/iqr View adapters to support the Industry Quick Reports path.

econ/quickreports View adapters to support the Quick Report Year selection (1997, 2002).

geocomponent View adapters to support the selection of geography components used
throughout AFF.

map View adapters to support map functions used throughout AFF.

mapcacheprimer Map primer is no longer used.

metadataBrowser View adapters to support the metadata browser used throughout AFF.

relatedItems View adapters to support the related items function used throughout AFF.

search View adapters to support the geographic selection functions used throughout
AFF.

subject View adapters to support retrieval of subjects, datasets, lists of tables and
themes used throughout AFF.

table View adapters to support the creation of tables

whatsnew View adapter to support the what’s new path.

Table 95: Subdirectories in the Java Source/gov/census/aff/viewAdapter directory

A.3.14. Java Source/gov/census/aff/xml Directory
The Java Source/gov/census/aff/xml subdirectory contains classes to parse XML messages
exchanged between the application and ArcIMS for mapping functionality.

A.4. Java Source/gov/census/cws Directory
The Java Source/gov/census/cws directory contains the Java source for the Congressional Web
Site (CWS) user interface implementation organized into subdirectories as shown below in Table 96. The
Java source includes the controllers and view adapters needed to implement CWS as a wrapper around
Core AFF.

Directory Contains

Controller

controller/navigation Servlets and helper classes supporting the navigation functionality in
CWS.

controller/result Servlets supporting the display of tables and thematic maps.

Viewadapter Viewadapter supporting the CWS user interface.

Table 96: Subdirectories in the Java Source/gov/census/cws directory

A.5. Java Source/gov/census/infrastructureservices Directory
The Java Source/gov/census/infrastructureservices directory contains the Java source for
the database infrastructure services used by Custom Table subsystem and the PHC functionality
organized into subdirectories as shown below in Table 97. The Java source includes the builders and
JDBC database connectors needed to implement the infrastructure services.

Date Last Printed: 9/26/06 Page 439 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Directory Contains

Builder Classes and interfaces to support establishing a connection,
executing a query, and obtaining the results of a query.

Jdbc Classes and interfaces to support establishing a connection,
executing a query, and obtaining the results of a query.

jdbc/dbconnectors Connector for the Advisor DataSource.

Tags

tags/html Implementation of a tag library that was never released.

Table 97: Subdirectories in the Java Source/gov/census/infrastructureservices directory

A.6. Java Source/gov/census/phc Directory
The Java Source/gov/census/phc directory contains the Java source specific to the Population and
Housing Characteristics (PHC) implementation organized into subdirectories as shown below in Table 98.
The Java source includes the controllers, domains, queries, services, and view adapters needed to
implement PHC on top of Core AFF.

Directory Contains

Controller One controller for PHC.

Domain Factory and domain objects. Uses the
gov.census.infrastructureservices package
extensively.

domain/classes Doesn’t exist.

domain/classes/tableproperties Classes generated from a set of XML constraints by the
Enhydra Zeus XML Data Binding Framework.

domain/dtd TBD

Queries Classes containing required queries. Uses the
gov.census.infrastructureservices package
extensively.

Service Service layers to support PHC.

Viewadapter View Adapter for PHC.

Table 98: Subdirectories in the Java Source/gov/census/phc directory

A.7. Java Source/gov/census/saff Directory
The Java Source/gov/census/saff directory contains the Java source specific to the Simple AFF
(SAFF) user interface implementation organized into subdirectories as shown below in Table 99. The
Java source includes the controllers and view adapters needed to implement SAFF as a wrapper around
Core AFF.

Directory Contains

Controller Root directory. Doesn’t exist.

controller/navigation Classes, controller layers, exceptions, and interfaces to support SAFF.

Domain Root directory. Doesn’t exist.

Date Last Printed: 9/26/06 Page 440 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Directory Contains

domain/population Root directory. Doesn’t exist.

domain/population/impl Implementation of the SAFF-specific Population Finder functionality
developed for AFF R9.4 but never released

Viewadapter View adapter and an interface to support SAFF.

Table 99: Subdirectories in the Java Source/gov/census/saff directory

A.8. Web Content Directory
The Web Content directory contains the non-Java source code and documents (HTML, images, etc)
that implement AFF. The source files in this directory are organized into subdirectories by type and
source.

Directory Contains

arcims ArcIMS configuration files created and maintained by DADS.

cache Key Entry files for the AFF caching mechanism.

config WebSphere 3.5 configuration files.

css Cascading Style Sheets (CSS) files.

home Static HTML documents, HTML fragments, and image files.

http-tars Prepackaged deliveries of static documents created by DADS content developers.

img Static image files.

javascript JavaScript include files.

jsp Root Directory. Contains JSPs grouped by function.

mapbase Common (base) JSP and JSP code fragments (include) files used by mapping JSPs.

mapcache HTML, JSP, and XML files for a currently unused component.

properties Property and XML configuration and metadata files.

rm JSPs for the reference maps.

sba JSPs for the select geography - address and the advanced geography search – address.

scripts Scripts executed on the server outside of the WebSphere Application Server.

sm JSPs for the advanced geography search - map and map it.

tm JSPs for thematic maps.

vendor JAR files provided by vendors.

w3c XML files specified, created and maintained by the BOC.

WEB-INF WEB-INF contains the classes, jars, and configuration files for the web application.

Table 100: Subdirectories in the Web Content directory

Some of the architecturally significant files in the root level of this directory are described in the following
table.

Date Last Printed: 9/26/06 Page 441 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

File Description

favicon.ico A small icon (16X16) that is used by some browsers to identify a bookmarked
Web site.

robots.txt Access policy for robots and crawlers.

Table 101: Architecturally significant files in the Web Content directory

A.8.1. Web Content/arcims Directory
The Web Content/arcims directory contains ArcIMS configuration files, created and maintained by
DADS, stored in tar format archive files.

Tar File Description

services.tar ArcIMS configuration files, including AXL files for reference and
thematic maps.

texture.tar Grayscale texture images used when generating monochromatic maps.

thematicmap_creator.tar Archived Java source code for a prototype thematic map creator.

Table 102: Architecturally significant files in the Web Content/arcims directory

A.8.2. Web Content/css Directory
The Web Content/css directory contains Cascading Style Sheets (CSS) files organized into
subdirectories by user interface. CSS files used by multiple user interfaces are stored at the root level of
this directory.

 For more information about the styles used by AFF, see the American FactFinder Web Style Guide.

Some of the architecturally significant static CSS files are described in the following table.

File Description

*print.css

*screen.css
CSS files that controls how a page is printed and how a page is displayed on
the screen.

*_mac.css CSS files for the Macintosh platform to work around issues with this platform.

cws/cws_ie50.css
saff/global_ie5.css

CSS files for IE 5.0 to work around issues with this browser.

saff/global_v4b.css A CSS file used for older browsers that do not support web standards.

Table 103: Architecturally significant files in the Web Content/css directory

A.8.3. Web Content/home Directory
The Web Content/home directory contains static documents (HTML, HMTL fragments and some
images). The source files in this directory are organized into subdirectories by user interface and
functionality. Common documents used across AFF are stored at the root level of this directory.

Directory Description

aian Documents for the AIAN user interface.

aian/glossary/ Documents for the AIAN glossary.

aian/glossary/css CSS for the AIAN glossary.

Date Last Printed: 9/26/06 Page 442 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Directory Description

aian/glossary/img Images for the AIAN glossary.

cws Documents for the CWS user interface.

cws/en CWS topic pages.

cws/glossary/ Documents for the CWS glossary.

cws/glossary/img Images for the CWS glossary.

en Common English-language documents, including error and feedback pages.

en/datanotes Data notes available on result pages via hyperlinks stored in the MDR.

en/dataset Program information in the form of HTML code fragments shown on the data
sets page. The naming convention is the three character program identifier
(DEC, ACS, ECN, PEP, EAS) with a .html extension.

en/epss Custom help documents not stored in the /http-tars/epss_en.tar file
that are hand-coded and generated outside of the Knowledge Producer tool.

en/epss/ppt AFF training slides in PowerPoint format.

en/img Images used by the custom help documents in the en/epss subdirectory.

es Common Spanish-language documents, including basic error and feedback
pages. This directory also contains the pre-R9.2.1 topic pages (*.html) and
other supporting documents (*.pdf) associated with the Spanish-language
user interface.

es/datanotes Data notes available on result pages via hyperlinks stored in the MDR.

es/dataset Program information in the form of HTML code fragments shown on the data
sets page. The naming convention is the three character program identifier
(DEC, ACS, ECN, PEP, EAS) with a .html extension.

es/epss Custom help documents not stored in the /http-tars/epss_es.tar file
that are hand-coded and generated outside of the Knowledge Producer tool.

saff Documents for the SAFF user interface.

saff/en SAFF topic pages.

Table 104: Subdirectories in the Web Content/home directory

The special javascript include file saff/usermessage.js contains the “message-of-the-day”.

For performance reasons, the main pages of user interfaces are static HTML documents.

User Interface Home Page Document

AIAN aian/index.html

CWS cws/main.html

AFF saff/main.html

Table 105: Main pages within the Web Content/home directory tree

Some of the architecturally significant static HTML pages common to both the English (en) and Spanish
(es) subdirectories are described in the following table.

Date Last Printed: 9/26/06 Page 443 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

File Description

cookies_not_enabled.html Error page shown when cookies are disabled in the user’s browser.

dataset_tablenum.html Pop-up form to select a table by table number.

error404.html Error page shown on a system error.

feedback.html Pop-up form to gather user feedback.

loading.html Pop-up “please wait” message.

session.html Error page shown when a user’s AFF session has expired.

Table 106: Architecturally significant files in the Web Content/home directory

A.8.4. Web Content/http-tars Directory
The Web Content/http-tars directory contains archive files (in tar format) with prepackaged
deliveries of static documents created by DADS content developers. During deployment, these files are
extracted to the directory specified.

Tar File Purpose

download_en.tar The English “read me” documents included in database downloads.
Deployed to the /home/en/download directory.

download_es.tar The Spanish “read me” documents included in database downloads.
Deployed to the /home/es/download directory.

epss_en.tar The English help and tutorial documents generated by Knowledge
Producer. Deployed to the /home/en/epss directory.

epss_es.tar The Spanish help and tutorial documents generated by Knowledge
Producer. Deployed to the /home/es/epss directory.

kids.tar The Kid’s Corner user interface implementation. Deployed to the
/home/en/kids directory.

static_thematic_images.tar The map images (*.gif) used by the Basic Facts user interface.
Deployed to the /img/tm/en and /img/tm/es directories.

Table 107: Architecturally significant files in the Web Content/http-tars directory

A.8.5. Web Content/img Directory
The Web Content/img directory contains static image files. The source files in this directory are
organized into subdirectories by user interface and language. Common images used across AFF are
stored at the root level of this directory.

Directory Description

aian The images used exclusively within the AIAN user interface.

cws The images used exclusively within the CWS user interface.

en Common images containing English text.

es Common images containing Spanish text.

saff The images used exclusively within the SAFF user interface.

saff/en The images used exclusively within the SAFF user interface containing English text.

Date Last Printed: 9/26/06 Page 444 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Table 108: Subdirectories in the Web Content/img directory

AFF uses Graphic Interchange Format (GIF) and Joint Photographic Experts Group (JPG) images. GIFs,
which use a non-lossy compression scheme, are used for line-art and for images containing large areas
of the same color, while JPGs, which use a lossy compression scheme, are used for photographic
images.

Some of the architecturally significant files in this directory are described in the following table.

Image File Purpose

1px.gif A one-pixel transparent image used, in conjunction with CSS, to space
and color areas.

smb_n.gif The series of nine faces shown in rotation in the AFF banner.

name.gif and name_r.gif Unselected menu and selected (reversed) menu items.

Table 109: Architecturally significant files in the Web Content/img directory

Images containing text have the same file name in both the en and es subdirectories, and the
subdirectory name is used to select the image. For example, the currently selected language (en or es) in
a JSP is stored in the lang variable, so the HTML to display a language-specific image in a JSP is:

<a href="/img/<%= lang %>/imagefilename.gif" … />

A.8.6. Web Content/javascript Directory
The Web Content/javascript directory contains JavaScript include files used by AFF web pages.
The source files in this directory are organized into subdirectories by user interface. Common JavaScript
include files used across AFF are stored at the root level of this directory.

Directory Description

aian JavaScript files used exclusively within the AIAN user interface.

common JavaScript files required on most AFF web pages.

cws JavaScript files used exclusively within the CWS user interface.

saff JavaScript files used exclusively within the SAFF user interface.

util JavaScript files with general-purpose functions that are used on multiple pages.

Table 110: Subdirectories in the Web Content/javascript directory

Some of the architecturally significant files in this directory are described in the following table.

JavaScript File Description

common/browser_ver.js Client agent detection.

common/layer_util.js General purpose layer support (used by menus1.js)

common/menus1.js Common menu system.

common/print_download.js Common print and download menu.

aian/aian_support.js and
aian/openAIANFeedback.js

AIAN global navigation menu.

cws/cws_support.js and
cws/openCWSFeedback.js

CWS global navigation menu and deep-links into AFF from CWS.

saff/links.js SAFF global navigation menu and deep-links into AFF from SAFF.

Date Last Printed: 9/26/06 Page 445 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

JavaScript File Description

epss_open.js, feedback.js,
and panel_id.js

Core AFF global navigation menu.

gotoMainPage.js Go to main page based upon the currently selected language.

loading.js Displays "please wait – loading data" message during long queries.

popclock.js Contains current US population clock value used by AFF and CWS
main pages; rewritten by a host process every few minutes.

timestamp.js Append a unique timestamp to URLs to avoid caching of pages.

Table 111: Architecturally significant files in the Web Content/javascript directory

A.8.7. Web Content/jsp Directory
The Web Content/jsp directory contains JavaServer Pages (JSPs) that create the dynamic AFF web
pages. JSPs implement the “view” in the model-view-controller paradigm used by AFF. The source files in
this directory are organized into subdirectories by user interface and function. Common JSPs used across
AFF are stored at the root level of this directory.

Directory Description

adv_search JSP files used exclusively within the Advanced Search user interface in AFF.

basicfacts JSP files used exclusively within the Basic Facts user interface in AFF.

customTable JSP files used exclusively within the Custom Table user interface in AFF.

cws Base directory for the Congressional Website.

cws/econ JSP files used exclusively within the …TBD

cws/facts JSP files supporting the Facts tab within the Congressional Web Site.

cws/gov JSP files supporting the Gov tab within the Congressional Web Site.

cws/housing JSP files supporting the Housing tab within the Congressional Web Site.

cws/people JSP files supporting the People tab within the Congressional Web Site.

cws/trade JSP files supporting the Trade tab within the Congressional Web Site.

dataset JSP files supporting the Dataset path in AFF.

econ TBD

GeoSelect JSP files supporting the geography selection functions within AFF.

inc Root directory. Contains no files.

inc/util Utility JSP files to show HttpRequest params and session contents.

menú TBD

metadataBrowser JSP files supporting the metadata browser function within AFF.

nodeploy JSP files supporting the AFF Central user interface.

nodeploy/inc JSP files utilized by JSPs located in nodeploy.

saff Simple AFF Root Directory

Date Last Printed: 9/26/06 Page 446 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Directory Description

saff/content JSP files supporting the population function within SAFF.

saff/content/acs JSP files supporting the ACS portion of SAFF.

saff/content/dec JSP files supporting the Decennial portion of SAFF.

saff/inc Utility JSP files to support SAFF.

subject JSP files supporting retrieval of subjects, datasets, lists of tables and themes
throughout AFF.

table JSP files supporting the generation of tables throughout AFF.

tabs JSP files supporting the tab user interface used throughout AFF.

Table 112: Subdirectories in the Web Content/jsp directory

A.8.8. Web Content/properties Directory
The Web Content/properties directory contains property configuration and XML metadata files. Files
within this directory are grouped into several categories:

• Message Files

• General Metadata Files

• Servlet Initialization Metadata Files

• System Configuration Files

A.8.8.1. Message Files
The message files externalize English and Spanish language messages from the Java and JSP source.

File Contents

AFFExceptionCatalog.properties Exception messages.

HTMLCatalog_en.properties English language messages.

HTMLCatalog_es.properties Spanish language messages.

Table 113: Architecturally significant message files in the Web Content/properties directory

A.8.8.2. General Metadata Files
The general metadata files externalize configuration data not available from the metadata repository.

File Contents

FTPaddress.properties URL for the BOC FTP download center.

verifyLinks.properties Link verification metadata.

Table 114: Architecturally significant general metadata files in the Web Content/properties directory

A.8.8.3. Servlet Initialization Metadata Files
The servlet initialization metadata files are externalized configuration data specified in web.xml on a
servlet-by-servlet basis using the initialization parameter BUNDLE_NAME.

Date Last Printed: 9/26/06 Page 447 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

File Contents

aian.properties AIAN user interface.

cdwnld.properties Download servlet.

cdwnld_gct.properties GCT download.

cdwnld_gct_xls.properties GCT XLS format download.

cdwnld_xls.properties XLS format download.

ctable.properties Custom table.

cws.properties CWS user interface.

download.properties Download limits.

econ.properties Economic data sets geography search.

mtable.properties Matrix table.

phctable.properties PHC table.

saff.properties SAFF user interface.

table.properties Other table.

vtable.properties Virtual table.

vtable_econ.properties Economic virtual table.

Table 115: Architecturally significant servlet initialization metadata files in the Web Content/properties directory

A.8.8.4. System Configuration Files
The system configuration files define basic parameters for an AFF instance, including the location of
resources.

File Contents

AccessKeyCatalog.properties AFF Central user access.

adv_search.properties Advanced search selection and results.

allQueries.xml Externalized SQL.

application.properties Core AFF user interface.

database.properties Database connection parameters.

GeoSelect subdirectory Geography search metadata.

LimitCatalog.properties System limits.

log4j.properties User activity logging configuration.

mapcache.properties Map cache configuration.

MapCreator.properties Map creator configuration.

mapserver.properties ArcIMS configuration.

mapurls.properties Mapping system resource locations.

persistence.properties Persistence cache policy.

Date Last Printed: 9/26/06 Page 448 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

File Contents

PersistentFactoryProperties.properties Persistence cache tuning.

RegistryCatalog.properties Registry tuning.

saff subdirectory SAFF Population Finder support (unreleased).

savedQuery.dtd DTD for load/save query.

sqlQueries.dtd DTD for externalized SQL queries.

SystemProperties.properties System configuration parameters.

ThreadPoolProperties.properties Thread pool tuning.

Table 116: Architecturally significant system configuration files in the Web Content/properties directory

A.8.9. Web Content/scripts Directory
The Web Content/scripts directory contains scripts executed on the server outside of the
WebSphere Application Server.

Some of the architecturally significant files in this directory are described in the following table.

Script Description

populationclock directory A collection of scripts and configuration files used to grab the latest
population clock values and update the popclock.js file. See the
readme.txt file in this directory for details and installation.

byteserver.pl Perl script to strip white space from AFF HTTP response messages.

getLinkFromDB.sh Extracts unique URLs from the Note and Product tables.

logtodb.sh Shell script to process user activity logs and store results in database.

verifyLinks.pl Perl script to verify hyperlinks (URLs) in AFF.

Table 117: Architecturally significant files in the Web Content/scripts directory

A.8.10. Web Content/vendor Directory
The Web Content/vendor directory contains JAR files provided by vendors.

Some of the architecturally significant files in this directory are described in the following table.

JAR File Description

arcims_jconnect.jar Object Model Java class files used by AFF to communicate with ArcIMS.

Table 118: Architecturally significant files in the Web Content/vendor directory

A.8.11. Web Content/WEB-INF Directory
The Web Content/WEB-INF directory contains the WebSphere configuration files, the compiled Java
classes, and the run-time libraries.

Some of the architecturally significant files and subdirectories in this directory are described in the
following table.

File / Directory Description

classes/gov/census/* Compiled Java Classes from the Java Source directory.

Date Last Printed: 9/26/06 Page 449 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

File / Directory Description

lib/* Libraries required by AFF and/or WebSphere.

lib/arcims_jconnectproxyv3.jar Needed by vendor supplied arcims_jconnect.jar.

lib/arcims_jconnectv3.jar Needed by vendor supplied arcims_jconnect.jar.

lib/classes12.9.2.0.1.zip Oracle JDBC drivers.

lib/jakarta-poi-2.0.jar Java API to Microsoft Format Files library (downloads).

lib/log4j-1.2.8.jar Logging Services library (user activity logging).

lib/nls_charset12.zip National Language Support Character Set needed by Oracle.

lib/xerces.jar Java Parser library (XML parser).

ibm-web-bnd.xmi IBM bindings.

ibm-web-ext.xmi IBM extensions.

web.xml Web deployment descriptor.

Date Last Printed: 9/26/06 Page 450 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

APPENDIX B. SUBSYSTEM SUPPORT MATRIX

B.1. Subsystem Support by Program
Not all subsystems are supported by all programs.

Subsystem DEC ACS ECN PEP EAS

ADP n/a supported n/a n/a n/a

CT supported n/a n/a n/a n/a

DT supported 3 supported n/a supported n/a

FDS n/a n/a supported n/a n/a

GCT supported 4 5 n/a n/a supported 6 n/a

GQR n/a n/a supported n/a n/a

GRT n/a supported n/a n/a n/a

IBQ n/a n/a supported n/a supported

IP n/a supported n/a n/a n/a

IQR n/a n/a supported n/a n/a

MYP n/a supported n/a n/a n/a

NP n/a supported n/a n/a n/a

PIQR n/a n/a supported n/a n/a

PQR n/a n/a supported n/a n/a

PUMS 7 supported supported n/a n/a n/a

QT supported 8 supported 9 n/a n/a n/a

RM supported supported supported supported n/a

ST n/a supported n/a n/a n/a

TM supported n/a 10 supported supported n/a

Table 119: Subsystem support by program matrix

3 Population Groups supported for Census 2000 SF-2 and SF-4 only.
4 Population Groups supported for Census 2000 SF-2 and SF-4 only.
5 No geographic component data is available for GCTs.
6 No geographic component data is available for GCTs.
7 There is no user session context for PUMS, PUMS is only supported via downloads.
8 Population Groups supported for Census 2000 SF-2 and SF-4 only.
9 No geographic component data is available for QTs in the ACS program.
10 This is due in part to the difficulty in accurately showing statistical significance (or upper and lower bounds) on a
thematic map as required by the ACS program.

Date Last Printed: 9/26/06 Page 451 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

The Advanced Search, Help/Metadata Browser, and User Statistics subsystems support all programs.

Date Last Printed: 9/26/06 Page 452 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

APPENDIX C. ENHANCEMENTS FOR SEARCH ENGINES

This Appendix contains conventions and standards used in AFF.

C.1. Table and Map Result Pages – Keywords & Description: Business Rules
This section specifies the business rules for generating keywords and description for AFF table and map
result pages. Keywords and descriptions both serve as integral elements to increase AFF visibility on
search engines. Increasing visibility of AFF on search engines is dependent upon aligning AFF keywords
with users’ search terms.

This document specifies the metadata attribute within the AFF Metadata Repository (MDR) that stores the
relevant information.

The code below is used to generate keywords for AFF table and map results.
meta_Keywords=$YEAR$,American,Fact,Finder,FactFinder,$TOKENIZE(CONTEXT_MEANING)$,$TOKE
NIZE(DATASET_NAME)$,TOKENIZE(KEYWORDS)$,TOKENIZE(GEO_NAME)$
meta_Description=American FactFinder (AFF) -- $CONTEXT_MEANING$ with subjects:
$SUBJECTS$ for GEO_PATH_NAME in Census dataset $DATASET_NAME$
meta_StopWords=am,an,as,at,be,is,if,of,by,no,on,or,to,and,for,not,the,this,type,types,
including

C.1.1. Business Rules for KEYWORDS
Sample keyword text (provided for reference):
<meta name=”Keywords”
content=”2003,American,Fact,Finder,FactFinder,ACS,Data,Profiles,2003,American,Communit
y,Survey,Summary,Tables,subfamilies,other,age,native,islander,family,size,race,older,p
acific,children,Hawaiian,totals,categories,sex,relationship,occupany,household,hispani
cs,tenure,owner,latino,status,housing,asian,renter,vacancy,units,occupied,hispanic,pop
ulation,units,detailed,Chicago,city”>

The table below itemizes the parameters used to define KEYWORDS.
KEYWORD

Code Parameter Description Examples MDR Attribute
CONTEXT_MEANING Identify the result

presentation type.
ACS Data Profiles VIRTUAL_TABLE_TYPE.MEANING

DATASET_NAME Identify the data set name
from which the result data
are sourced.

2003 American Community
Survey Summary Tables

DATASET.DISP_LABEL

KEYWORDS Leverage system-assigned
subjects (from AFF Related
Items) to generate topic-
oriented keywords for AFF
result pages.
Exclude “stopwords” –
extraneous non-descriptive
words within subjects.

subfamilies, other, age, native,
islander, family, size, race, older,
pacific, children, Hawaiian, totals,
categories, sex, relationship,
occupany, household, hispanics,
tenure, owner, latino, status,
housing, asian, renter, vacancy,
units, occupied, hispanic,
population, units

SUBJECT_TREENODE.DISP_LABEL

GEO_NAME Identify the geographic
area name for which result
data are presented.

Chicago city GEO_TREENODE.NAME

YEAR Survey year. 2000 DATASET_SUPERSET.SVY_YEAR

Table 120: Business Rules for KEYWORDS

Date Last Printed: 9/26/06 Page 453 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

C.1.2. Business Rules for DESCRIPTION
Sample description text (provided for reference):
<meta name=”Description” content=”American FactFinder (AFF) – ACS Data Profiles with
subjects: Tenure (Owner/Renter Occupied Units), Hispanic or Latino/Not Hispanic or
Latino, by Race, Occupancy and Vacancy Status, Household Type, Size, and Relationship,
Older Population, Native Hawaiian and Other Pacific Islander, Race (Including Detailed
Categories of Race), Asian, Household Type and Household Size, Housing Unit Totals,
Sex, Hispanic or Latino (Including Types of Hispanics), Children, Age, Family Type and
Subfamilies & Population Totals for Chicago city, Illinois in Census dataset 2003
American Community Survey Summary Tables “>

The highlighted text represents text that is not obtained from the AFF MDR.

The table below itemizes the parameters used to define DESCRIPTION.
DESCRIPTION

Code Parameter Description Examples MDR Attribute
CONTEXT_MEANING Identify the result

presentation type.
ACS Data Profiles VIRTUAL_TABLE_TYPE.MEANING

SUBJECTS Leverage system-
assigned subjects
(from AFF Related
Items) to generate
topic-oriented
keywords for AFF
result pages.

Tenure (Owner/Renter Occupied Units),
Hispanic or Latino/Not Hispanic or Latino,
by Race, Occupancy and Vacancy Status,
Household Type, Size, and Relationship,
Older Population, Native Hawaiian and
Other Pacific Islander, Race (Including
Detailed Categories of Race), Asian,
Household Type and Household Size,
Housing Unit Totals, Sex, Hispanic or
Latino (Including Types of Hispanics),
Children, Age, Family Type and
Subfamilies & Population Totals

SUBJECT_TREENODE.DISP_LABEL

GEO_PATH_NAME Identify the
geographic area
name for which result
data are presented.

Chicago city, Illinois GEO_TREENODE.PATH_NAME
[+ GEO_CMPNT.DISP_LABEL]1

1 only if entity is a geo component
Table 121: Business Rules for DESCRIPTION

Date Last Printed: 9/26/06 Page 454 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

APPENDIX D. GLOSSARY OF TERMS AND ACRONYMS

Common American Factfinder and U.S. Census Bureau terms are found and described in these on-line
glossaries:

• American FactFinder Glossary
<http://factfinder.census.gov/home/en/epss/glossary_a.html>

• Census 2000 Glossary <http://www.census.gov/dmd/www/glossary/glossary_a.html>

• Decennial Management Division Glossary and Abbreviation/Acronym List
<http://cww2.census.gov/glossary/>

Terms specific to the AFF technical design, but not found in the above documents, are defined in the
following sections.

D.1. Acronyms and Abbreviations
The following acronyms and abbreviations are specific to the AFF technical design.

Term Meaning
ACS American Community Survey
ADP ACS Data Profile
AdvSearch Advanced Search
AFF American FactFinder
AGS Advanced Geography Search
ArcIMS ESRI’s Internet Mapping Server COTS

software
ArcSDE ESRI’s Advanced Spatial Data Server

COTS software

AXL Arc XML File
BF Basic Facts
BoC Bureau of (the) Census
CAFF Core AFF
CAO Congressional Affairs Office
CC IBM’s ClearCase COTS software
CD Congressional District
CLP Crawler Launch Pad
CQ ClearQuest
CSS Cascading Style Sheets
CSV Comma Separated Value file format
CT Custom Table
CWS Congressional Web Site
DADS Data Access and Dissemination System
DBMS Data Base Management System
DEC Decennial Census
DEV Development Environment
DHTML Dynamic HTML
DMZ Demilitarized Zone

Term Meaning
DP Demographic profile
DS Data Set
DSP Data Sets Page
DT Detailed Tables
DW Data Warehouse
DWS Developer Workstation
ECN Economic Census and Surveys
EKWS Economy-Wide Key Statistics
EN English
ES Spanish
ESRI Environmental Systems Research

Institute
ESS Electronic Switching System
FAQ Frequently Asked Questions
FIPS Federal Information Processing

Standards
FMT Format
FS Fact Sheet
FS Functional Specification
FTP File Transfer Protocol
GCT Geographic Comparison Tables
Geo Geography
GEO Geography Division
GeoComp Geographic Component
GeoId Geographic Identifiers
GIF Graphic Image File format
GQ Group Quarters
GQR Geography Quick Report

http://affdev1.dads.census.gov/home/en/epss/glossary_a.html

Date Last Printed: 9/26/06 Page 455 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Term Meaning
GRT Geographic Ranking Table
GSL Geographic Summary Level
GUI Graphical User Interface
GWG Geo-within-Geo
HTML Hypertext Markup Language
HTTP HyperText Transport Protocol
IBQ Industry Build Query
IHS IBM HTTP Server COTS software
IP Iterated Profile table or Internet Protocol
IQR Industry Quick Report
IR Internal Review Environment
J2EE Java 2 Platform, Enterprise Edition
JavaDoc Tool that automatically creates

documentation from Java source-code
files

JDBC Java DataBase Connectivity
JDK Java Developement Kit
JPG Joint Photographic Experts Group file

format
JS JavaScript
JSP JavaServer Page
JVM Java Virtual Machine
KC Kids Corner
MD Metadata
MDR Metadata Repository
Mod Module
MSA Metropolitan statistical area
MT Matrix Table
MVC Model View Controller
MYP Multi-Year Profile
NAICS North American Industry Classification

System
NFR Non-Functional Requirement
NP Narrative Profile
PA Product Assurance
PDF Portable Document File
PEP Population Estimates Program
PF Population Finder
PHC Population and Housing Characteristics
PIQR Product (Industry) Quick Report
PNG Portable Network Graphics file format
PQR Product Quick Report
PRD Products

Term Meaning
PRD Result Product
PROD Production Environment
PT Part
PUMS Public Use Microdata Sample
QRY Query
QT Quick Table
RI Related Times
RM Reference map
SA System Administration
SAFF Simple AFF
SP IBM’s Scalable POWERparallel COTS

hardware
SQL Structured Query Language
ST Subject Table
SVI Survey Instance
SVY Survey
TBL Table
TIGER TIGER database
TM Thematic map
TOPAZ Mercury Interactive’s Application

Monitoring COTS product
TWS Tribal Web Site
UAL User Activity Logging
UI User Interface
URI Uniform Resource Identifier
URL Uniform Resource Locator
VT Virtual Table
VTG Virtual Table Generator
WSAD WebSphere Application Studio

Developer
XHTML Extensible HyperText Markup Language
XLS Microsoft Excel file format
XML Extensible Markup Language
ZIP ZIP compressed file format

Table 122: Acronyms and Abbreviations

http://www.atis.org/tg2k/_language.html

Date Last Printed: 9/26/06 Page 456 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

D.2. Glossary
The following terms are specific to the AFF technical design:

Term Definition
Advanced Search The AFF functionality that allows users to search AFF.
Advanced Geography
Search

The subset of Advanced Search that searches geography.

AIX AIX is IBM’s version of the UNIX operating system and is the operating system used
for the AFF DEV, PA, IR, and PROD environments.

American FactFinder
(AFF)

An electronic system for access and dissemination of Census Bureau data on the
internet. The system was formerly known as the Data Access and Dissemination
System (DADS).

ANT Apache Ant is a Java-based build tool.
Arc XML (AXL) File An XML-based configuration file for ArcIMS.
Base Tables The lowest level detail tables stored in AFF.
Basic Facts A deprecated user interface in AFF, now only used on the Spanish language AFF.
Boxhead The portion of a statistical table which the labels for individual columns together with

any classifying and qualifying spanner heads that may appear across one or more
column headings to add further descriptive captions to the columns.

Cascading Style Sheets
(CSS)

When attached to documents, these describe how the document is displayed or
printed, e.g. a CSS is attached to an HTML document to influence its layout when
accessed via a browser. CSS supports cascading, i.e. a single document may use
two or more stylesheets that are than applied according to specified priorities
(=cascade).

Cell In a tabulation, a field containing a single number, usually a count of some kind of
unit, such as persons or housing units possessing some kind of characteristic (for
example, a certain age or number of rooms). In a statistical table with rows and
columns of numbers, a cell constitutes the intersection of one row and one column.
Sometimes also termed tally cell or data item.

Censo 2000 Puerto Rico
en Español

Census 2000 Puerto Rico in Spanish. The data for Census 2000 Puerto Rico in
Spanish are accessed in FactFinder from a button in the lower left corner of the Main
Page. The same data in English are included in the Census 2000 of the United States
dataset. FactFinder does not present data from the 1990 Census of Population and
Housing for Puerto Rico.

ClearCase (CC) IBM’s COTS source code control system used by the AFF development teams.
ClearQuest (CQ) IBM’s COTS change tracking system used by the AFF development teams.
Congressional Web Site
(CWS)

The AFF internal name for the Fact Facts for Congress website.

Core AFF Functionality common to all AFF user interfaces.
Crawler Launch Pad
(CLP)

Functionality used to make AFF friendlier to search engines, such as Google and
Yahoo.

Custom Table (CT) The user-definable table subsystem in AFF.
Data Set A logically meaningful grouping or collection of similar or related data. For example,

all Census 2000 Summary File # 1 (SF-1).
Data Sets Page The AFF web page for selecting a data set; the main entry point for expert users.
Data Warehouse (DW) The detailed data store housing the data in AFF.
Derived Products Result products built from queries across one or more detailed tables.
Developer Workstation
(DWS)

The PC-based workstation used by AFF developers to code and unit test AFF.

Date Last Printed: 9/26/06 Page 457 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Term Definition
Development
Environment (DEV)

The AIX-based environment used by AFF developers to system test AFF.

DMZ Demilitarised Zone, a no-man's land between the Internet and the internal network.
This zone is NOT in the internal network, but is NOT widely open on the Internet. A
firewall or a router usually protects this zone with network traffic filtering capabilities.

ESRI Environmental Systems Research Institute, a world leader in GIS technology that
supplies the COTS software used by the AFF mapping subsystem.

Frequently Asked
Questions (FAQ)

List of frequently asked questions and their answers. This functionality is provided to
AFF by a standard Census Bureau system.

Functional Specification A formal description of AFF that is used as a blueprint for implementing the program.
At minimum, a functional specification should precisely state the purpose (eg, the
function) of the software. In addition, a functional specification often describes the
software from the user's perspective -- how the user interface appears and how a
user would use the program to perform specific functions.

Geocoding Geocoding is the process of assigning to a street address or intersection a latitude
and longitude coordinate and/or geographic codes that associate an address to
census geography such as a block group, census tract or county.

Geographic Summary
Level (GSL)

The collection of geographies at the same level in the geography hierarchy. Three
examples: States, Counties, and Congressional Districts.

Geography Division
(GEO)

The organization within the Census Bureau that provides AFF with spatial data.

Geo-within-Geo (GWG) An AFF geography selection mechanism that supports selecting a collection of
geographies at a geographic summary level within another (parent) geography. For
example: All Counties within a specific Congressional District.

Graphical User Interface
(GUI)

The interface for issuing commands to AFF and interacting with the results.
Pronounced “gooey”.

HTTP The communications protocol used between the end-user’s browser and AFF.
Hypertext Markup
Language (HTML)

The document format language used on the World Wide Web. Web browsers read
HTML and display the page.

IBM HTTP Server (IHS) The IBM COTS web server software used by AFF to handle static content.
Internal Review
Enviroment (IR)

The AIX-based AFF test environment used by subject matter experts to review AFF
release content before an AFF release is deployed to the Production environment.

Internet Mapping Server
(IMS)

The ESRI COTS mapping server software used by AFF to create maps.

Java Server Page (JSP) A technology for controlling the content or appearance of web pages through the use
of servlets, small programs that are specified in the web page and run on the Web
server to modify the web page before it is sent to the user who requested it. The
“view” in the model view controller design of AFF.

Java Virtual Machine
(JVM)

A platform-independent programming language that converts compiled Java
bytecode into machine language and executes it; the IBM WebSphere Application
Server provides the JVM to run the AFF Application written in Java.

JavaDoc A tool that automatically creates documentation from Java source-code files.
JavaScript JavaScript is a programming language imbedded in Web pages and read by the

browser. AFF uses JavaScript for client-side execution including input validation and
user interface navigation.

Matrix Table An AFF internal table that is a view of one or more base tables.
Metadata Information about the content, quality, condition, and other characteristics of data.

Metadata related to tables presented in American FactFinder can be found by clicking
on column headings or by clicking "Help" and then "Census Data Information."

Metadata Repository
(MDR)

A collection of data about the data in the data warehouse used by AFF to control the
user interface and navigation.

Date Last Printed: 9/26/06 Page 458 of 458
Location: C:\Documents and Settings\davis090\Desktop\25-Sept_06 Bidder's Library\American FactFinder Detailed Technical Design.doc

Term Definition
Mod 2 Area in data center where non-production AFF systems are located.
Mod 2 Cage Secure area in data center where production AFF systems are located.
Model View Controller
(MVC)

A basic design pattern used in the implementation of AFF.

Product Assurance
Environment (PA)

The AIX-based AFF test environment where AFF releases are tested before being
deployed to the Internal Review environment.

Population and Housing
Characteristics (PHC)

These are Census 2000 Summary Population and Housing Characteristics tables, a
publication series which includes information on the 100-percent population and
housing subjects. The data are available for the United States, regions, divisions,
states, counties, county subdivisions, places, metropolitan areas, urbanized areas,
American Indian and Alaska Native areas, and Hawaiian homelands. The series is
comparable to the 1990 CPH-1 report series, Summary Population and Housing
Characteristics. The series is available in printed form and on the Internet in PDF
format.

Production Environment
(PROD)

The AIX-based AFF production environment where AFF releases are deployed.

Red Alert Monitoring software that periodically verifies that AFF is available from outside the
BOC firewall.

Result Product An AFF web page that shows the result of a user query, usually a table or map.
Section 508 Section 508 of the Rehabilitation Act of 1973, as amended, is a US law requiring

electronic technology used by the government to be accessible. Specific
requirements are maintained by the Access Board in the Electronic and Information
Technology Accessibility Standards (36 CFR Part 1194). This standard is structured
as a set of provisions, each identified by a paragraph. There are 16 paragraphs
applicable to web technology.

Spatial Database Engine
(SDE)

ESRI’s COTS Spatial database manager software.

Stub General purpose term for configuration of the leftmost table row or column headings;
see geostub, rowstub, and boxhead.

GeoStub The definition, via metadata, of the leftmost table column that contains a list of
geographies, such as in a GCT.

RowStub The definition, via metadata, of the leftmost table column that contains a list of
measures, such as in a DT.

TOPAZ Monitoring software that periodically verifies that AFF is available from outside the
BOC firewall.

Tribal Web Site Another name for the AIAN user interface.
Table 123: Glossary

	1. INTRODUCTION
	1.1. Scope
	1.2. Audience
	1.3. Purpose
	1.4. What is AFF?
	1.4.1. Important Definitions
	1.4.1.1. AFF System / AFF Application
	1.4.1.2. Census vs Survey / Count vs Characteristic
	1.4.1.3. Language Support (Puerto Rico / Spanish)
	1.4.1.4. Sagent

	1.5. References
	2. ARCHITECTURAL REPRESENTATION
	2.1. Functional View
	2.2. Logical View
	2.3. Operational/Process View
	2.4. Deployment View
	2.5. Implementation View

	3. ARCHITECTURAL GOALS AND CONSTRAINTS
	3.1. Architectural Goals
	3.1.1. Background
	3.1.2. Challenges
	3.1.3. The Business Drivers
	3.1.4. The Solution
	3.1.5. Architectural Principals
	3.1.6. Stakeholders
	3.1.7. Users
	3.1.7.1. User Categories

	3.1.8. Surfers
	3.1.9. Manipulators
	3.1.10. Portrayers
	3.1.11. Extractors

	3.2. Constraints
	3.2.1. Census Bureau Policies, Standards and Guidelines
	3.2.2. Federal Regulations
	3.2.3. Survey Data Issues
	3.2.4. COTS Software Licensing Issues
	3.2.5. Non-Function Requirements
	3.2.6. Web-based

	4. FUNCTIONAL VIEW
	4.1. Workflows
	4.2. Products
	4.3. Workflow and Subsystem Notation
	4.4. User Interfaces
	4.4.1. User Interface Guidelines
	4.4.1.1. General Approach
	4.4.1.2. Section 508

	4.4.2. Main Window Page Layout
	4.4.2.1. Global Navigation Menu
	4.4.2.2. Left Navigation Bar

	4.4.3. Pop-Up Window Page Layout
	4.4.4. Main Page User Interface
	4.4.5. Simple AFF User Interface
	4.4.6. Data Sets Page User Interface
	4.4.7. Crawler Launch Pad (CLP) User Interface
	4.4.8. Census 2000 Puerto Rico (Spanish Language) User Interface
	4.4.9. Core AFF User Interface
	4.4.9.1. Program Selection
	4.4.9.2. Data Set Selection
	4.4.9.3. Geographic Selection(s)
	4.4.9.4. Product Selection(s)
	4.4.9.5. Other Selection(s)
	4.4.9.6. Result(s)
	4.4.9.6.1. Table Results
	4.4.9.6.2. Map Results
	4.4.9.6.3. Result Page Modify Actions
	4.4.9.6.4. Breadcrumbs
	4.4.9.6.5. Scroll Actions
	4.4.9.6.6. Map Actions
	4.4.9.6.7. Menu Actions
	4.4.9.6.7.1. Options
	4.4.9.6.7.2. Filter Rows
	4.4.9.6.7.3. Print / Download
	4.4.9.6.7.4. Related Items

	4.4.10. Congressional Web Site User Interface
	4.4.11. American Indian and Alaska Native (AIAN) Data and Links User Interface
	4.4.12. Kid’s Corner User Interface
	4.4.13. Basic Facts User Interface
	4.4.14. Administration User Interface
	4.4.14.1. AFF Central
	4.4.14.2. AFF System Tools

	4.4.15. Command Line (System Administration) User Interface

	4.5. Subsystem Workflows
	4.5.1. Advanced Search (AdvSearch) Subsystem
	4.5.2. ACS Data Profile (ADP) Subsystem
	4.5.3. Narrative Profile (NP) Subsystem
	4.5.4. Custom Table (CT) Subsystem
	4.5.5. Detailed Table (DT) Subsystem
	4.5.6. Geographic Comparison Table (GCT) Subsystem
	4.5.7. Geography Quick Reports (GQR) Subsystem
	4.5.8. Geographic Ranking Table (GRT) Subsystem
	4.5.9. Industry Build Query (IBQ) Subsystem
	4.5.10. Industry Quick Reports (IQR) Subsystem
	4.5.11. Multi-Year Profile (MYP) Subsystem
	4.5.12. Quick Table (QT) Subsystem
	4.5.13. Interated Profiles (IP) Subsystem
	4.5.14. Subject Tables (ST) Subsystem
	4.5.15. Product (Industry) Quick Reports (PIQR) Subsystem
	4.5.16. Product Quick Reports (PQR) Subsystem
	4.5.17. Thematic Map (TM) Subsystem
	4.5.18. Reference Map (RM) Subsystem
	4.5.19. Help / Metadata Browser (HELP) Subsystem
	4.5.19.1. Step Help
	4.5.19.2. Census Data Information
	4.5.19.3. Glossary
	4.5.19.4. Tutorials

	4.5.20. Public Use Microdata Sample (PUMS) Subsystem

	4.6. Common Workflow Steps
	4.6.1. Select Data Elements
	4.6.2. Select a Data Set
	4.6.3. Select Filter
	4.6.4. Select Geographies
	4.6.5. Select a Geography
	4.6.6. Select Industry
	4.6.7. Select Population Groups
	4.6.8. Select a Population Group
	4.6.9. Select a Program
	4.6.10. Select Quick Report
	4.6.11. Select a Ranking Table
	4.6.12. Select a Table Format
	4.6.13. Select a Theme
	4.6.14. Select Tables
	4.6.15. Select a Table

	4.7. Other Functionality
	4.7.1. Bookmarking
	4.7.2. Deep-Linking
	4.7.3. Save/Load Query
	4.7.4. User Statistics

	4.8. Session Contexts

	5. LOGICAL VIEW
	5.1. System Context Diagram
	5.1.1. Entities Interacting with AFF

	5.2. Architectural Overview Diagram
	5.2.1. IBM WebSphere Edge Server
	5.2.2. IBM HTTP Server
	5.2.3. HTTP Plug-In
	5.2.4. WebSphere Application Server
	5.2.5. Application Server Clones
	5.2.6. IBM LDAP Server
	5.2.7. ArcIMS
	5.2.8. ArcSDE
	5.2.9. AFF Application Architecture
	5.2.9.1. Design Patterns
	5.2.9.2. MVC Controller
	5.2.9.3. MVC View
	5.2.9.4. MVC Model
	5.2.9.4.1. Service
	5.2.9.4.2. Factory
	5.2.9.4.2.1. Factory Caching

	5.2.9.4.3. Builder

	5.2.9.5. Business Objects
	5.2.9.6. Data Access
	5.2.9.7. Session
	5.2.9.8. Session Database

	5.2.10. Logging
	5.2.11. AFF Logical Data Structure
	5.2.11.1. English Metadata Repository (EMDR)
	5.2.11.2. Spanish Metadata Repository (SMDR)
	5.2.11.3. Data Warehouse (DW) for tabular data
	5.2.11.4. Spatial Data Warehouse (SDW) for geospatial data
	5.2.11.5. Session Database (SESS)
	5.2.11.6. Feedback (FB)
	5.2.11.7. User Activity (UA)

	5.3. Separation of Concerns and Architectural Tiers
	5.3.1. Architectural Tiers
	5.3.1.1. Benefits of Layering
	5.3.1.2. Benefits of Information Hiding
	5.3.1.3. Benefits of Encapsulation

	5.4. AFF Component Model
	5.4.1. Custom Components
	5.4.1.1. Client Tier
	5.4.1.1.1. Design Patterns and Considerations
	5.4.1.1.2. Common User Agent Types
	5.4.1.1.3. Web Standards
	5.4.1.1.4. Cookies
	5.4.1.1.5. HTML Forms
	5.4.1.1.6. Bookmarking
	5.4.1.1.7. Caching by User Agent and Proxy Servers
	5.4.1.1.8. Client-side Request Validation

	5.4.1.2. Presentation Tier
	5.4.1.2.1. Design Patterns and Considerations
	5.4.1.2.2. Session Management Approach
	5.4.1.2.2.1. Manage Client State on Server
	5.4.1.2.2.2. Persistent Session requires Serializable Session Object
	5.4.1.2.2.3. Concept of AFF Context

	5.4.1.2.3. Server-Side Request Validation
	5.4.1.2.4. JSP Design Approach

	5.4.1.3. Business Tier
	5.4.1.3.1. Design Patterns and Considerations
	5.4.1.3.2. Application-Level Caching of Complex Objects
	5.4.1.3.3. Application-Level Cache Serialization
	5.4.1.3.4. Unique Identification of Business Entities (Keys)

	5.4.1.4. Integration Tier
	5.4.1.4.1. Design Patterns and Considerations
	5.4.1.4.1.1. Building SQL Statements
	5.4.1.4.1.2. Closing Connections
	5.4.1.4.1.3. JDBC Exceptions Crossing Tiers
	5.4.1.4.1.4. Uniquely Identifying Objects

	5.4.1.5. Resource Tier
	5.4.1.5.1. Design Patterns and Considerations
	5.4.1.5.2. Use of Stored Procedures and Packages

	5.4.1.6. Enhanced Infrastructure
	5.4.1.6.1. Design Patterns and Considerations

	5.4.2. Custom Infrastructure Components
	5.4.2.1. Thread Pooling
	5.4.2.2. Connection Monitoring
	5.4.2.3. AFF Language
	5.4.2.3.1. Metadata support for multiple languages
	5.4.2.3.2. Localization of web page content

	5.4.2.4. Catalog Services
	5.4.2.4.1. Runtime update of properties using JSP tools

	5.4.2.5. Context Parser

	5.4.3. Technical and Infrastructure Components
	5.4.3.1. Infrastructure Components
	5.4.3.1.1. Web Browser (User Agent)
	5.4.3.1.2. IBM WebSphere Edge Server
	5.4.3.1.3. IBM HTTP Server
	5.4.3.1.4. IBM HTTP Server Plug-In
	5.4.3.1.5. WebSphere Application Server
	5.4.3.1.5.1. J2EE Web Container

	5.4.3.1.6. ESRI ArcIMS
	5.4.3.1.7. ESRI ArcSDE
	5.4.3.1.8. IBM DB2 Database
	5.4.3.1.9. Oracle Database Enterprise Edition
	5.4.3.1.10. IBM AIX Operating System
	5.4.3.1.10.1. SP Systems with Parallel System Support Programs (PSSP)
	5.4.3.1.10.2. IBM Virtual Shared Disk (VSD)
	5.4.3.1.10.3. Oracle Real Application Clusters (RAC)

	5.4.3.1.11. Sagent Package
	5.4.3.1.11.1. Sagent Library
	5.4.3.1.11.2. Sagent Address File

	5.4.3.2. Technical Components
	5.4.3.2.1. Edge Server Custom Advisors (Edge)
	5.4.3.2.2. AFF Application
	5.4.3.2.3. Sagent Geocoder Plug-In
	5.4.3.2.4. Databases

	5.4.3.3. Maintenance Processing Components
	5.4.3.4. Internal Monitoring Components
	5.4.3.5. External Monitoring Components
	5.4.3.6. Third-Party Components integrated into the AFF Application

	5.5. Architectural Mechanisms
	5.5.1. Security Model
	5.5.1.1. Identification, Authentication, Authorization and Intrusion Detection Requirements
	5.5.1.2. Immunity Requirements
	5.5.1.3. Integrity Requirements
	5.5.1.4. Privacy Requirements

	5.5.2. Session Failover
	5.5.2.1. Normal Operation
	5.5.2.2. Failure of an Application Server Clone
	5.5.2.3. Failure of an Application Server Cluster
	5.5.2.4. Failure of the Session Database

	5.5.3. Exception Logging
	5.5.3.1. Functional Description
	5.5.3.2. Design Approach
	5.5.3.2.1. gov.census.aff.controller.common.AFFSessionExpiredException
	5.5.3.2.2. gov.census.aff.domain.common.AFFDataNotAvailableException
	5.5.3.2.3. gov.census.aff.domain.table.savedQuery.AFFSavedQueryException
	5.5.3.2.4. gov.census.aff.util.exceptionhandling.AFFGctMismatchException
	5.5.3.2.5. gov.census.aff.util.exceptionhandling.AFFPopUpBlockerException
	5.5.3.2.6. gov.census.aff.util.exceptionhandling.AFFRedirectException
	5.5.3.2.7. gov.census.cws.controller.navigation.CwsException
	5.5.3.2.8. Exception logging

	5.5.3.3. Class Diagrams
	5.5.3.4. Sequence Diagrams

	5.5.4. User Activity Logging
	5.5.5. Zero Footprint on Client Brower
	5.5.6. 508 Compliance
	5.5.7. Bookmarking
	5.5.7.1. Suppressing Session Expiration

	5.5.8. Thread Pooling
	5.5.9. Producer-Consumer for Faster UI Refresh
	5.5.9.1. Simple Manager
	5.5.9.2. Smart Manager
	5.5.9.2.1. Sequence Diagram

	5.5.10. Application-Level Caching
	5.5.10.1. Functional Description
	5.5.10.2. Design Approach
	5.5.10.2.1. Cache Parameters
	5.5.10.2.2. Cache maintenance policies
	5.5.10.2.3. Loading/Saving of cache key and objects
	5.5.10.2.4. Practical considerations for setting optimal caching parameters

	5.5.10.3. Class diagram
	5.5.10.4. Sequence diagram

	5.5.11. Custom Advisor for WebSphere Edge Server
	5.5.11.1. Description
	5.5.11.2. Design Approach
	5.5.11.2.1. ADV_ckwas Custom Advisor
	5.5.11.2.2. NDAdvisor Servlet
	5.5.11.2.3. ADV_ims53 Custom Advisor

	5.5.11.3. Special Requirements for Creating Custom Advisor
	5.5.11.3.1. Advisor naming conventions
	5.5.11.3.2. Deployment Path

	5.5.12. Map Architectural Components
	5.5.12.1. Flow of control diagram
	5.5.12.2. ArcIMS
	5.5.12.2.1. AXL Files
	5.5.12.2.2. Sample Request & AXL
	5.5.12.2.3. Query Service and geocode service AXL files
	5.5.12.2.4. Custom Legend
	5.5.12.2.5. Custom Advisor
	5.5.12.2.6. ArcIMS Connector

	5.5.12.3. ArcSDE
	5.5.12.3.1. SDE Layers
	5.5.12.3.2. Organization of SDE Layers in AFF

	5.5.12.4. Sagent
	5.5.12.4.1. Deployment of new Sagent files to AFF
	5.5.12.4.1.1. Deploying updated address files from Sagent
	5.5.12.4.1.2. Deployment of new address files from Sagent
	5.5.12.4.1.2.1. Building a custom DLL
	5.5.12.4.1.2.2. Copying Sagent address files
	5.5.12.4.1.2.3. Updating ArcIMS configuration files & defining new service
	5.5.12.4.1.2.4. ArcIMS restart

	5.6. Detailed Design for Architectural Significant Use Case
	5.6.1. SAFF – Simple AFF
	5.6.1.1. Functional Description
	5.6.1.1.1. FactSheet
	5.6.1.1.2. People, Housing and Business & Government Pages

	5.6.1.2. Place of component in functional view
	5.6.1.3. Design Approach
	5.6.1.3.1. SAFF and CWS Metadata for factsheets
	5.6.1.3.2. SAFF Geo Bridging
	5.6.1.3.3. SAFF Search Scenarios
	5.6.1.3.3.1. Search against DEC 2000
	5.6.1.3.3.2. Search against latest ACS year available
	5.6.1.3.3.3. Search against ECON 2002

	5.6.1.3.4. Organization of SAFF JSPs

	5.6.1.4. URL (named servlets) to Java servlet class mapping
	5.6.1.5. Class diagram
	5.6.1.6. Sequence diagram
	5.6.1.7. Data model

	5.6.2. View Dataset Page
	5.6.2.1. Functional Description
	5.6.2.2. Design Approach
	5.6.2.3. Relevant Named Servlets & Initialization Parameters
	5.6.2.4. Sequence Diagrams
	5.6.2.4.1. Main Controller (DatasetMainPageServlet)
	5.6.2.4.2. SaffDatasetMainPageServlet
	5.6.2.4.3. DatasetMainPageServlet_ES
	5.6.2.4.4. Creation of the DatasetPage.
	5.6.2.4.5. Creation of Program objects.
	5.6.2.4.6. Dataset methods used to populate the supported paths popup.

	5.6.2.5. Data Model
	5.6.2.5.1. Common metadata entities for the View Datasets Page.
	5.6.2.5.2. Tabs
	5.6.2.5.3. The supported path popup when a dataset is selected.
	5.6.2.5.3.1. Check for Detail Tables Support

	5.6.2.5.4. Check for Quick Tables Support

	5.6.3. Geography Selection
	5.6.3.1. Description
	5.6.3.2. Place of component in functional view
	5.6.3.3. Specification documentation
	5.6.3.4. URL (named servlets) to Java servlet class mapping
	5.6.3.4.1. Geo Select by List
	5.6.3.4.2. Geo Select by Place Name
	5.6.3.4.3. Geo Select by Address
	5.6.3.4.4. Geo Select by Map
	5.6.3.4.5. Geo Select by Geo within Geo
	5.6.3.4.6. Multiple Geography Selection

	5.6.3.5. Class re-use and cooperation in geo select
	5.6.3.6. Key data model components for geo select
	5.6.3.6.1. Common metadata entities for geographic selection
	5.6.3.6.2. The concept of data-driving the geographies

	5.6.3.7. Geo select by list sub-component
	5.6.3.7.1. Functional description
	5.6.3.7.2. Design Approach
	5.6.3.7.3. Class diagram
	5.6.3.7.4. Sequence diagram
	5.6.3.7.5. Data model

	5.6.3.8. Geo select by place name sub-component
	5.6.3.8.1. Functional description
	5.6.3.8.2. Design Approach
	5.6.3.8.3. Class diagram
	5.6.3.8.4. Sequence diagram
	5.6.3.8.5. Data model

	5.6.3.9. Geo select by address sub-component
	5.6.3.9.1. Functional description
	5.6.3.9.2. Design Approach
	5.6.3.9.2.1. Interaction with Sagent and ArcIMS
	5.6.3.9.2.2. Rules for creating geo ids
	5.6.3.9.2.3. Validating geo ids against trees

	5.6.3.9.3. Class diagram
	5.6.3.9.4. Sequence diagram
	5.6.3.9.5. Data model

	5.6.3.10. Geo select by map sub-component
	5.6.3.10.1. Functional description
	5.6.3.10.2. Design Approach
	5.6.3.10.2.1. Determining geography when a user clicks on the map
	5.6.3.10.2.2. Determining geographies that aren’t released or are unavailable
	5.6.3.10.2.3. Weeding out geographies that are not mappable but are in the selection

	5.6.3.10.3. Class diagram
	5.6.3.10.4. Sequence diagram
	5.6.3.10.5. Data model

	5.6.3.11. Geo select by geo within geo sub-component
	5.6.3.11.1. Functional description
	5.6.3.11.2. Design Approach
	5.6.3.11.2.1. Sample query for finding geographies, which nest fully in a parent geography
	5.6.3.11.2.2. Sample query for geographies, which don’t fully nest in a parent geography

	5.6.3.11.3. Class diagram
	5.6.3.11.4. Sequence diagram
	5.6.3.11.5. Data model

	5.6.4. Subject Selection
	5.6.4.1. Description
	5.6.4.1.1. Custom Tables

	5.6.4.2. Place of component in functional view
	5.6.4.3. Specification documentation
	5.6.4.4. URL (named servlets) to Java servlet class mapping
	5.6.4.4.1. Select Subject by List
	5.6.4.4.2. Select Subject by Keyword
	5.6.4.4.3. Select Subject by Topic

	5.6.4.5. Class re-use and cooperation in subject select
	5.6.4.6. Key data model components for subject select
	5.6.4.7. Subject select by list all sub-component
	5.6.4.7.1. Functional description
	5.6.4.7.2. Design Approach
	5.6.4.7.3.
	5.6.4.7.4. Class diagram
	5.6.4.7.5. Sequence diagrams
	5.6.4.7.6. Data model

	5.6.4.8. Subject select by keyword sub-component
	5.6.4.8.1. Functional description
	5.6.4.8.2. Design Approach
	5.6.4.8.3. Class diagram
	5.6.4.8.4. Sequence diagram
	5.6.4.8.5. Data Model

	5.6.4.9. Subject select by topic sub-component
	5.6.4.9.1. Functional description
	5.6.4.9.2. Design Approach
	5.6.4.9.3. Class diagram
	5.6.4.9.4. Sequence diagram
	5.6.4.9.5. Data Model

	5.6.4.10. Custom table subject selection sub-component
	5.6.4.10.1. Functional description
	5.6.4.10.2. Design Approach
	5.6.4.10.3. Class diagram
	5.6.4.10.4. Sequence diagram
	5.6.4.10.5. Data Model

	5.6.5. Create a Table (full example)
	5.6.5.1. References
	5.6.5.2. Functional Description
	5.6.5.3. Design Approach
	5.6.5.4. Named Servlets
	5.6.5.5. Class Diagrams
	5.6.5.5.1. Overview
	5.6.5.5.2. View Adapter
	5.6.5.5.3. Service
	5.6.5.5.4. Keys
	5.6.5.5.5. Factory
	5.6.5.5.6. Domain
	5.6.5.5.7. Builder

	5.6.5.6. Sequence Diagrams
	5.6.5.6.1. Servlet Initialization
	5.6.5.6.2. Request Processing
	5.6.5.6.3. Table Service for Detailed Tables
	5.6.5.6.4. Table Service for Quick Tables
	5.6.5.6.5. Table Service for Geographic Comparison Tables
	5.6.5.6.6. Table Services for Economic Detailed Datasets
	5.6.5.6.7. Table Service for ACS Ranking Tables

	5.6.5.7. Data Model
	5.6.5.7.1. Shell objects (VIRTUAL_TABLE)
	5.6.5.7.2. Matrix objects (MATRIX_TABLE)
	5.6.5.7.3. EconDataset objects (DATASET)

	5.6.5.8. Future Enhancements

	5.6.6. Select an Economic Detailed Dataset
	5.6.6.1. Functional Description
	5.6.6.1.1. List by Sector
	5.6.6.1.2. Keyword Search
	5.6.6.1.3. Filter by Geography/Industry/Data Item

	5.6.6.2. Design Approach
	5.6.6.3. Named Servlets
	5.6.6.4. Class Diagrams
	5.6.6.4.1. List by Sector
	5.6.6.4.2. Keyword Search
	5.6.6.4.3. Filter by Geography/Industry/Data Item

	5.6.6.5. Sequence Diagrams
	5.6.6.5.1. List by Sector
	5.6.6.5.2. Keyword Search
	5.6.6.5.3. Filter by Geography/Industry/Data Item
	5.6.6.5.3.1. Dataset Match Servlet (Count Layer)

	5.6.6.6. Data Model

	5.6.7. Custom Tables
	5.6.7.1. Functional Description
	5.6.7.2. Design Approach
	5.6.7.2.1. Data Element Selection
	5.6.7.2.2. Outer-Join SQL Result Query
	5.6.7.2.3. Hints

	5.6.7.3. Named Servlets
	5.6.7.3.1. Geography Selection
	5.6.7.3.2. Data Element Selection
	5.6.7.3.3. Filter on Data Element
	5.6.7.3.4. Table Result

	5.6.7.4. Class Diagrams
	5.6.7.5. Sequence Diagrams
	5.6.7.5.1. Key Creation Service for Custom Tables
	5.6.7.5.2. Table Creation Service for Custom Tables

	5.6.7.6. Data Model

	5.6.8. Download a Table
	5.6.8.1. Functional Description
	5.6.8.2. Design Approach
	5.6.8.3. Named Servlets
	5.6.8.4. Class Diagrams
	5.6.8.5. Sequence Diagrams
	5.6.8.5.1. Servlet Initialization
	5.6.8.5.2. Instantiate New Formatter Class
	5.6.8.5.3. Process Request
	5.6.8.5.4. Geographic Content File
	5.6.8.5.5. Additional Files

	5.6.8.6. Data Model

	5.6.9. Related Items
	5.6.9.1. Functional Description
	5.6.9.2. Design Approach
	5.6.9.2.1. DEC, ACS, PEP Related Items
	5.6.9.2.2. ECON Related Items

	5.6.9.3. Named Servlets
	5.6.9.4. Class Diagrams
	5.6.9.5. Sequence Diagrams
	5.6.9.5.1. Sequence diagram for retrieving Related Subjects
	5.6.9.5.2. Sequence diagram for hydrating View Adapter
	5.6.9.5.3. Sequence diagram for retrieving Related Item Links

	5.6.9.6. Data Model

	5.6.10. Advanced Search
	5.6.10.1. Functional Description
	5.6.10.2. Design Approach
	5.6.10.3. Named Servlets
	5.6.10.4. Class Diagrams
	5.6.10.4.1. Relationships between servlets, services, factories and builders
	5.6.10.4.2. Relationship between Builders, Streamable Statements and String Statements

	5.6.10.5. Sequence Diagrams
	5.6.10.5.1. Keyword Search - Overview
	5.6.10.5.2. Geography Search – Overview

	5.6.10.6. Data Model
	5.6.10.6.1. Keyword Search
	5.6.10.6.2. Search by Geography Data Model
	5.6.10.6.2.1. Get geographies by name (Default Geography tab, Name tab)
	5.6.10.6.2.2. Data Model – Get products that cover a specific geography (Default Geography Tab, List Tab, Name Tab)
	5.6.10.6.2.3. Data Model – Get products by Address (Address Tab)
	5.6.10.6.2.4. Data Model – Get map products by Geography (Map Tab)

	5.6.11. Access Metadata Browser
	5.6.11.1. Functional Description
	5.6.11.2. Design Approach
	5.6.11.3. Named Servlets
	5.6.11.4. Class Diagrams
	5.6.11.5. Sequence Diagrams
	5.6.11.5.1. Sequence diagram for a Quick Table (QT)
	5.6.11.5.1.1. Sequence diagram – getQuickTable(..)
	5.6.11.5.1.2. Sequence diagram – getSurvey(..)

	5.6.11.5.2. Sequence diagram for a Thematic Map (TM)
	5.6.11.5.2.1. getTheMap() – Sequence diagram detailing process of retrieving metadata for a thematic map

	5.6.11.6. Data Model

	5.6.12. Create a Reference Map
	5.6.12.1. Functional Description
	5.6.12.1.1. Glossary of Terms

	5.6.12.2. Design Approach
	5.6.12.2.1. Design/Architectural decisions on session/state management
	5.6.12.2.2. Map Class Diagrams
	5.6.12.2.2.1. Hierarchy of Controller Classes Used for Drawing Maps
	5.6.12.2.2.2. Hierarchy of Controller Classes Used for Boundaries Page
	5.6.12.2.2.3. Hierarchy of Controller Classes Used for Features Page
	5.6.12.2.2.4. Hierarchy of Service Classes Used for Drawing Maps
	5.6.12.2.2.5. Hierarchy of View Adapter Classes Used for Drawing Maps
	5.6.12.2.2.6. Hierarchy of View Adapter Classes Used for Boundaries & Features Page

	5.6.12.2.3. Caching
	5.6.12.2.4. Load Balancing
	5.6.12.2.5. Services Provided/Services Used
	5.6.12.2.5.1. Services Provided
	5.6.12.2.5.2. Services Used

	5.6.12.3. Named Servlets
	5.6.12.4. Class Diagrams
	5.6.12.4.1. Reference Map Draw Controllers
	5.6.12.4.2. Map Domain Hierarchy
	5.6.12.4.3. Reference Map Boundaries & Features Controllers

	5.6.12.5. Object Interaction Diagrams
	5.6.12.5.1. Controller & Service Interaction for Drawing Reference Maps
	5.6.12.5.2. Service & Domain Interaction for Drawing Reference Maps
	5.6.12.5.3. Map Domain Interaction 1 – BuildDisplay
	5.6.12.5.4. Map Domain Interaction 2 – BuildMap
	5.6.12.5.5. Map Domain Interaction 3 - Refresh
	5.6.12.5.6. Controller & Service Interaction for Boundaries & Features

	5.6.12.6. Data Model
	5.6.12.6.1. Supporting metadata
	5.6.12.6.2. Sample Map View Group Queries
	5.6.12.6.2.1. Finding all map view group categories for reference maps:
	5.6.12.6.2.2. Finding view groups associated with a map view group category
	5.6.12.6.2.3. Finding default boundaries associated with a map view group

	5.6.13. Create a Thematic Map
	5.6.13.1. Functional Description
	5.6.13.1.1. Natural Breaks
	5.6.13.1.2. Equal Interval
	5.6.13.1.3. Quantile
	5.6.13.1.4. User Defined

	5.6.13.2. Design Approach
	5.6.13.2.1. Service Layer
	5.6.13.2.2. Caching
	5.6.13.2.3. createKey() method
	5.6.13.2.4. Retrieving Geography IDs
	5.6.13.2.5. Identify
	5.6.13.2.6. Layers
	5.6.13.2.7. Virtual Table Generator (VTG)
	5.6.13.2.7.1. Sample thematic map spec file

	5.6.13.3. Named Servlets
	5.6.13.4. Class diagrams
	5.6.13.5. Sequence diagrams
	5.6.13.6. Data model

	5.6.14. User Activity Logging
	5.6.14.1. Functional Description
	5.6.14.2. Design Approach
	5.6.14.3. Named Servlets
	5.6.14.4. Class Diagrams
	5.6.14.4.1. Real-time logging of user requests
	5.6.14.4.2. Off-line processing of log files

	5.6.14.5. Sequence Diagrams
	5.6.14.5.1. Real-time logging of user requests
	5.6.14.5.2. Off-line processing of log files
	5.6.14.5.2.1. Sequence diagram – buildRobotInfo(..)

	5.6.14.6. Data Model
	5.6.14.6.1. User Activity Reporting

	5.6.15. Load & Save Query
	5.6.15.1. Functional Description
	5.6.15.2. Design Approach
	5.6.15.3. Named Servlets
	5.6.15.3.1. Save Query
	5.6.15.3.2. Load Query

	5.6.15.4. Class Diagrams
	5.6.15.4.1. Load Query
	5.6.15.4.2. Save Query

	5.6.15.5. Sequence Diagrams
	5.6.15.5.1. Load Query
	5.6.15.5.2. Save Query

	5.6.15.6. Data Model

	5.6.16. Congressional Web Site (CWS)
	5.6.16.1. Functional Description
	5.6.16.1.1. Navigation
	5.6.16.1.1.1. Geography Navigation
	5.6.16.1.1.2. Subject Navigation

	5.6.16.1.2. Fact Sheet
	5.6.16.1.3. People, Housing and Economic Links

	5.6.16.2. Place of component in functional view
	5.6.16.3. Design Approach
	5.6.16.3.1. CWS Metadata for fact sheets
	5.6.16.3.2. CWS Geo Bridging
	5.6.16.3.3. Organization of CWS JSPs
	5.6.16.3.4. Feedback system

	5.6.16.4. URL (named servlets) to Java servlet class mapping
	5.6.16.5. Class diagram
	5.6.16.6. Sequence diagram
	5.6.16.7. Data model

	5.6.17. Industry Selection (Econ)
	5.6.17.1. Functional Description
	5.6.17.2. Design Approach
	5.6.17.3. Named Servlets
	5.6.17.4. Class Diagrams
	5.6.17.4.1. Industry Codes
	5.6.17.4.2. Industry Types

	5.6.17.5. Sequence Diagrams
	5.6.17.5.1. Industry Selection

	5.6.17.6. Data Model

	5.6.18. Bookmarking
	5.6.18.1. Functional Description
	5.6.18.1.1. Redirection Behavior

	5.6.18.2. Design Approach
	5.6.18.2.1. URL Generation
	5.6.18.2.2. URL Graceful Degradation
	5.6.18.2.3. Suppressing Session Expiration
	5.6.18.2.4. AFFReqState Construction
	5.6.18.2.5. Flow Of Control
	5.6.18.2.5.1. New Request Flow of Control
	5.6.18.2.5.2. Bookmarked Request Flow of Control

	5.6.18.2.6. Bookmarking Control
	5.6.18.2.6.1. Global Bookmarking Flag
	5.6.18.2.6.2. Servlet Bookmarking Flag
	5.6.18.2.6.3. URL level bookmark parameter

	5.6.18.2.7. HTTP Request Wrapper
	5.6.18.2.8. Graceful Degradation Support
	5.6.18.2.9. Extensibility
	5.6.18.2.10. Limitations

	5.6.18.3. Named Servlets
	5.6.18.4. Class Diagram
	5.6.18.5. Sequence Diagram

	6. OPERATIONAL/PROCESS VIEW
	6.1. Execution Environments
	6.1.1. Environment Relationships
	6.1.2. Processes Within An Execution Environment
	6.1.2.1. Client
	6.1.2.2. Internet
	6.1.2.3. Edge Server
	6.1.2.4. Busy Server
	6.1.2.5. Unavailable Server
	6.1.2.6. Web Server
	6.1.2.7. Application Server
	6.1.2.8. Session Database
	6.1.2.9. Metadata Repository Databases
	6.1.2.10. Data Warehouse Databases
	6.1.2.11. Spatial Databases
	6.1.2.12. Mapping Server
	6.1.2.13. LDAP Server

	6.1.3. Subsystems
	6.1.4. Processes and Subsystem Relationships
	6.1.5. Production Environment
	6.1.5.1. Edge Server Request Distribution and Fail-Over Handling
	6.1.5.2. Using External Review to Deploy and Test a New Release

	6.1.6. Internal Review Environment
	6.1.7. Product Assurance Environment
	6.1.8. Development Environment

	6.2. Startup / Shutdown
	6.2.1. System Startup / Shutdown
	6.2.2. Leg Startup / Shutdown
	6.2.3. Subsystem Startup / Shutdown

	6.3. Batch Processes
	6.3.1.1. Edge Server Custom Advisors (enD)
	6.3.1.2. AFF Monitor (AFFMON)
	6.3.1.3. TOPAZ
	6.3.1.4. Database Monitor
	6.3.1.5. Database Watchdog
	6.3.1.6. Edge Server Log Management
	6.3.1.7. WebSphere Subsystem Log Management
	6.3.1.8. Mapping Subsystem Log Management
	6.3.1.9. User Activity Log Processing
	6.3.1.10. Map Cleanup
	6.3.1.11. WebSphere Subsystem Reboots
	6.3.1.12. Mapping Subsystem Reboots
	6.3.1.13. Server Hardware Reboots

	6.4. Patching
	6.4.1. The “message of the day” alert

	6.5. Monitoring
	6.5.1. Reports
	6.5.2. Instantaneous Monitoring

	7. DEPLOYMENT VIEW
	7.1. Overview
	7.1.1. Number of Tasks
	7.1.2. Server and Database Connections
	7.1.3. Naming Conventions

	7.2. Development Environment

	8. IMPLEMENTATION VIEW
	8.1. Development Process
	8.2. Developer Workstations
	8.2.1. Any Workstation
	8.2.2. Developer Workstation
	8.2.3. Builder Workstation

	8.3. ClearQuest Defect / Feature Tracking System
	8.4. ClearCase Source Control System
	8.5. Source Tree
	8.6. Build and Deployment Workflow
	8.7. The AFF Application Deliverable

	9. SIZING AND PERFORMANCE VIEW
	9.1. Overview
	9.2. Users and User Activity
	9.3. Response Times
	9.3.1. User Activity Limits and Assumptions
	9.3.2. Performance Testing

	9.4. Network Bandwidth
	9.5. Application Performance Techniques
	9.6. Non-Application Performance Techniques
	9.6.1. Custom Advisors

	10. QUALITY
	10.1. Correctness
	10.2. Reliability
	10.3. User Friendliness
	10.3.1. Client Support

	10.4. Maintainability
	10.5. Efficiency
	10.6. Portability

